PDS

SO

6502 Assembler & Monitor
manual

1

2

3.1

3.2

4.1

4.2

4.3

5.1

53

6.1

6.2

6.3

6.4

6.5

Contents

The Programmers Development Systemn 6502 assembler -
Expression evaluation

The assembler pseudo opcodes

Assembly listing related pseudo opcodes

Example programs
Errors during assembly

Example macros in the 6502 assembler

The PDS download software
The PDS download software protocols

The control lines during PDS communication

The PDS 6502 Monitor

The PDS monitor commands

The options and configure system in the monitor
The trace system

The trace system options

430 & LA VAT LVA LWL

1 The Programmers Development System 6502 Assembler

The assembler is invoked from the editor at any position in the source code by pressing the [ASSEM] function key.
Assembly begins at the start of file 0 and will continue through the files until the end of file 7, or an END is reached. 1lan
error occurs during assembly the assembler will stop, display an error message and move the current cursor position Lo

the start of the line containing the error. Clear the error message by pressing any key, correct the error and reassemble
again. \

Each line is individually processed and assembled, The assembler is looking for a number of possibilities the line could
contain. '

.

Labels in PDS must start o the first charactér of the line, Labels can be of any length,'containing any valid labcl characters
for that particular assembler, The first character can be any valid label character, except the numeric digits 0 to 9. The
valid label characters that are allowed in the 6502 assembler are: \

1.OOTAZ £

Note the assembler is not case sensitive, it converts everything into upper case, At the end of the label PDS will ignore
one non-label character. This means that if your source code has come {from an assembler that demands labels be followed

with colons or hashes then PDS will ignore the extra characters. For example, PDS accepts all these syntaxes as label
definitions for FRED:)

FRED NOP
FRED: NCP
FRED# NOP

This feature may cause a prdblcms if you insert an extra character by mistake, as in the following examples:
a i

FRED+ Nop |
FRED- NOP
FRED* NOP

FRED; ~ NOP

H
Notice the semicolon in the fourth example does not cause the rest of the line to be ignored, il is treated as the label
terminator. If you don’t want to define a label on a line you must enter at least one space or tab, In between all the ficlds
on a ling, PDS will skip over any number of tabs and/or spaces. After a label PDS will expect to find a pseudo opcode or
mnemonic. If you have an isolated label in a line, it is given the current value of program counter.

! Comments ma{y be included anywhere in the source code, they are preceded by semi colons, Note, never use a semi colon
for a comment immediately after a label as it will read as the label terminator character, After a semi colon the rest of the
linc is ignored. At the very start of a line you may also usé an asterisk to make the assembler ignore the line. For example:

; This is just a line of comment
kkkkkkhkhhkhkkhkhkkhhhhikkkkhkhkhkhkhhkhhd

* So is this ! *
R T L EE L EEE
NOP 7 ; This is a comment

‘

The PDS 6502 Manual P : 2

2 Expression Evaluation

When a label is at the start of the line, it is set to the current value of the program counter (the program counter is the
address where code is assembled to). You may have an sumber of labels, each having the same value. For example:

FRED
JOHN
BILL NOP

FRED, JOHN, BILL all have the same value, the memory address of the NOP instruction.

Local labels are a major part of PDS, any label that starts with a pling sign (1) is considered a local label. You may use
local labels in the same way you'd use normal labels, although every time you usc a ‘normal’ label, all the local label
definitions are cleared. We recommend that you use normal labels at the start of main subroutines, and local labels within
the subroutine. This way you will never get re-defined label errors. Below is an example of local labels.

11 NOP N
NOP ‘
JMP 11 ; (Jumps to the first 11)
FRED NOP
JMp !1 ; (Second)
) NOP
11 BNE !1 ; (Second)
NOP
BILL NOP
NOP
b1 JMP 11 ; (Third) |

You should try and use local labels as much as possible, For short jumps (over a few bytes) it is not worth having to think
up a valid label name. Local labels must be used in macros to prevent multiple definitions, but they will not affect other.
{ocal labels with the same name, either in the main program, of in nested macros. Locat labels also make it easy to copy
large blocks of source code, because if all the labels are local, they need not be altered.. Just ensure that you insert a
normal labe! in front of the copied code. ‘

If you wish to know the current address of the program counter (PC) in an expression then yo.u may use **', which will
reiurn the current PC. So the example below, BILL, JOE and JOHN are given the same value:-

BILL EQU *
JOE
- JOHN NOP

Numbers in PDS may be entered in HEX, DECIMAL, ASCII or BINARY.

To cnter a number in decimal just enter the number as normal, PDS wil] allow you to enter numbers from -32768 to 65535,
but remeniber that minus numbers are a duplication of the numbers 32768 to 65535. For example, if you entered -20/4
the expression would return 16379 instead of -5 as you might expect. This is because the -20 was treated as 65516 (the 2's
complement value).

To enter a number in HEX, you may either enter it starting with an and sign (&) eg: &1234 or &ABCD or entering it
starting with the more familiar dollar sign ($), eg: $1234 or SABCD

To enter a number in BINARY, proceed the string of ones and zeros with a %" eg: %1010 or 21001110
To enter ASCII values, just enclose them in double quotes, for example "a" returns $61; or "ab" returns $6261.

Expressions in PDS can contain labels, numbers and any number of brackets and operators. Expressions are evaluated
{rom left toright using standard mathematical priorities, for example: 2+3%6 will return 20 not 30. The PDS

allows are as follows;

- Negate, if a number or label, not an expression, is preceded by a minus sign then
its value will be negatell. If you wish to negate an expression then you should use,
-1 * (expression).

+-4/ Will add, subtract, multiply and divide the two operands. There are no error
checks on these operations, so you may have expressions such as 60000*5 or
60000 + 60000 which will return the result MOD 65535. Remember that division
will round down, so 7/3 will be 2. S

& Will logical AND the two operands.

! Will logical OR the two operands,

Will logical XOR the two operands,

= If the two operands are equal, this will return one, else it will return zero. eg:5=4
returns 0 and 23 =23 returns 1. ' '

<> Is the reverse of the alyove.

> If the expression on left hand side, is greater than the right hand side expression,
then this will evaluate to one, otherwise zero is returned.

< Is the reverse of the above.,

IT'>or’ <’ is al the start of an expression, PDS will return either the low or high bytes only. For example > $1234 will
return $34 and < $1234 will return $12. This is the default setiing, the arrow pointing at the byte returned. You mayreverse
this setling in the configuration system, so that > $1234 would return $12. Note the greater or lesser than signs can only
be used at the starl of expressions, egi >23*52+ FRED., 1l you want to use high or low bytes within an expression you will
have to surround the expression with brackets eg; 23 + 52* (< FRED). -

The expressions are evaluated from lelt to right, except for operators with higher priorities. Operators are evaluated in
the following order; :

(and)

< and > - when used fo return LSB and MSB.
*and/

+ and -

=,<>, > and < - when used 4s more than and less than.
&,land ~

S02+7&3 will evaluate 2+ 7 then AND with 3, returning 1, Or 7&3 +2 would evaluate 3 +2 then AND with 7, returning
5. Brackets can be used to override these priorities, as they have the highest priority.

A nice feature in PDS is the ability to eheck the range of expressions in the program code. If you want an expression to
return a value only within aspecific range, eg betwedn 100 and 120, then simply insert the range directly after the expression,
enclosed in square brackets. For example: :

FRED*2+3~BILL [100,120]

Will given an’expression out of range’ error if it evaluates to below 100, or above 120, The ranges could even be expressions
themselves, they don’t have be numeric. This does not affect the expression in any way and is ignored by the assembler,

unless the expression is out of range. Spaces and/or tabs can be used after the expression and before the range check,
and will be ignored, eg:

LDA FRED+23 %2 [58,70]

One common mistake is to use expressions brackels in (he wrong place and fool (he assembler, for example ;

The PDS 6502 Manual 5 4

LDA (FRED+2)*3

Would give an extra characters on line error, as the expression in brackets would be treated as a indirect memory reference
with Y, the *3 would be extra characters, If you wish to use this sort of expression then you would have to enter it as below

LDA 3% (FRED+2)

or
LDA 04 (FRED+2) %3

Which would load A with the value at the absolute address of the expression.

the PDS 6502 Manual 5

3.1 The : assembler psendo ops.

i

Most pscudo ops have a number of different syntax, this is to allow the programmer to use source code directly from other

assemblers without having to make too many changes. Any or all of them can be used in your programs, all of which will
perform exactly the same task. :

There are two pseudo opcode lists, the first covers the usual co{;ic related pseudo ops, while the second list is specifically
for assembly listings related pseudo ops. C

\ | |

The PDS 6502 Manual 6

ASK - Will get a yes/no response from the user

¥

ASK must be used on a line with a fabel. This pseudo opcode will stop assembly on pass 1, print the message following
the ask pseudo op, adding this prompt, ” (Y/N)?", automatically. The user has to now press either {Y] or [N], in response
to the prompt. If [N] is pressed, then the label is given a value of zero while depressing [Y] will assign a value of one lo
the label. Note: due to the way {he assembler works, any text following the command will be converted into upper case.
To use lower casc as well put a single quote at the start of your message. For example:

CHEAT ASK "Cheat mode

Will stop assembly and display the following message in the command window:
Cheat mode (Y/N)7?
Then wait for a Y or N response.

Similar pseudo opcode is QUERY,

400 1 LA VoL LYidliddl i

BANK -‘Downloads code into different memory banks

Syntax; | BANK <bank number 0-255 > [,start address)

This is a very complex command in PDS, but it allows the user to program compuiters which cither have banked RAM, or
a RAM capacity greater than 64K. If PDS finds a BANK command in your program, the indicated bank number is sent
to the target computer. This will then select the correct bank configuration, download all the assembled code before the
BANK pseudo opeode. Only the code assembled from the last accurrence of a BANK pseudo opcode, or the stari of the

program, will be downloaded. If a stant address is specified, then the downloader will jump to the address, and continue
the assembly. '

i

The bank numbers mean nothing to PDS, these are just passed directly to the target computer download software, the
programmer must add their own routines to the download software to interpret them; On a Commodore 64, the uscr

could simply store the number at address 1, to select dilferent memory maps. See the chapter on the download software
for more information. '

By allowing an oplional starf address the user can make the target computer jump to the routine just downloaded, while
PDS continues assembling. Here is one possible use for this powerful function,

“If the download software is located at $8000 and the programmer wants to write code to this address, to save having to

make a new copy of the download software, simply download it somewhere else in memory. The program would then look
something like this:

ORG $7000

** DOWNLOAD SOFTWARE CODE (C64.DL1 for example) **

BANK 0,$7000
ORG $8000

** PROGRAM CODE **

END '

What this will do is assemble a new copy of the download software at $7000, jump to it, then download the main program

at $8000, where the old download software used to be, This is assuming that the download software would take BANK 0

as being main memory. This is only one example of bank’s use, It can also be used to download code overlays (routines
%hat run at a common address) individually, then save them to disk, compress them, or move them about in memory,

Note: After a baitk command, the assembler is ‘reset’, apart from the symbol table, which means the user will have to insert
a new ORG before code following the BANK pseudo op. The SKIP function will also be disabled.

If required to write code for a computer with a number of banks the program would look something like:

ORG START

k% PROGRAM FOR BANK NUMBER 1 *%
BANK 1

*% PROGRAM FOR BANK NUMBER 2 **
BANK 2 '

*% PROGRAM FOR BANK NUMBER 3 %%
BANK 3
END

Note that PDS will automatically download the code on pass 2, without prompting 'Download (Y/N)?, otherwise
downloading could become very tedious, particularly when using a number of banks, If an error occurs in the second
pass, while PDS is assembling the code for bank 2, you should hote the code for bank 1 will already have been assembled
and downloaded. The target computer will also still be setup for BANK 1.

To change bank, without downloading code, then simply insert the bank command before the ORG pseudo opcode. This

The PDS 6502 Manual

'

may have to be done in the last cxample, it START was actually in bank 1. Under these conditions the program will n
run correctly, because the last block of code was downloaded to bank 3. So when the exceution address is passed, it v
execute code in bank 3. To get around this situation, insert the setup of the correct bank for the execution label, in U
case 2 'BANK 1’ command directly before the "END’ in the program. .

After assembling the complete program, the prompt "Download (Y/N)’ appears as normal.

Rather than have bank numbers such as ,1,2.... most soltware will have odd numbers such as $27 lor main memory, B
for bank 1 etc. The code will be more readable if you define equates such as:

MAIN EQU $27
ONE EQU $25

Then enter BANK ONE or BANK MAIN.

Note that when using the BANK command, skip is digabled, and you will see no skip’ displayed in the command |
window after assembly has been completed.

b
o aTs | A s e AT R A M

CBM - Commodore define message

This has the exactly the same syntax as DB, but any text in quotes will be given in the Commodore 64 screen codes rather
than ASCII. For example: ‘ . : ‘

CBM "“CAT™" 3 .
produces : 3,1,$14
This command does not allow text to be used in expressions tllougll eg: "C" +128 would not be allowed.

\ \
Similar pseudo opcodes, see DB,

The PDS 6502 Manual 10

DB - Defines bytes and messages.
DFB
DEFB

BYTE

EQUB

BYTE

ASCII

JEXT

TEXT

ASC

STR

DEFM

DM

DFM

Following the command there can be any number of parameters, separated by commas, each of which must be an expression
within the range -128 to 255. Strings of text and text mixed with numeric expressions can also be used. For example:

DB 23,45+52-FRED,"This is a test message',13,10,"!1"+128

To include the quotes character inside slringsl,‘put two quotes one after the other eg: "Say ""HELLO"" would produce :
SAY "HELLO".

BYTE is slightly different in that if there are no parameters it will default to BYTEO.

For similar commands see CBM, DC and STRING. ‘ ;
For a faster way of storing data sce HEX. =~ *'

The PDS 6502 Mannal 11

DC . Define message, ending in bit 7 set.

This pseudo opcode is very similar to DB, but any text strings will have bit 7 set on their last character. Many programmers
use this format for text, to indicate that the end of a string has been reached, for example:

DC 2,"cat",13,"in
would produce: .
2,$63,$61,5F4,135A1 | ' ‘-

For similar command see DB, CBM and STRING.

e e

e

T

e

The PDS 6502 Manual _ ! : 12

DH - Define high bytes oniy
DHIGIH

Is similar to DW, but adds a’ < (gets high byte of expression only) in {ront of all the expreséions. It is mainly used when
you have tables of high and low bytes in programs. This is a common occurrence in 6502 code. For example:

DH 65500,23,500
will produce: $FF,0,1

For similar commands see DL,

The PDS 6502 Manual 13

DL , . Define low bytes only
DLOW

This functions in a similar way to DW, but a’ >’ (symbol to get low byte of expression) is added in front of all expressions.
This is mainly used when you have tables of high and low bytes in programs. This is a common occurrence in 6502 code.
For example: ‘

DH 65500,23,500
will produce: $DC,23,$F4 \ ;

For similar commands see DH, : \

The PDS 6502 Manual _ 4

DO - Used in DO...LOOP or DO...UNTIL expressions

There are two different syntaxes for the 'DO’ command, both uses produce blocks of similar code.
DO expression

¥2x program code *****

LOOP

This will repeat the block of code between the DO and LOOP pseudo opcodes, expression number of times. For example:

DO 8

LDA (FRED),Y
STA BILL,X
INX

INY

LOOoP

Note that the expression alter the DO is only evaluated once, when the DO is first assembled. When LOOP is executed
the local labels are cleared, allowing local labels to be used in DO struclures, ie:

DO B

ADC #20 |
BCC !1 |
INX
11 INY

LOooP
The second syntax for the DO command, is as {ollows:

DO
* K kK K program COde PR E R R

\ UNTIL expression

i

This is similar to ’DO...LOOP’, but the expression is cvaluated each time and will only exit when it returns a non zero valu
This could be used in the following way: .
4 3

;

The PDS 6502 Manual - ‘ 15

DO

ILDA (FRED),Y

STA BILL,X '
INX '

INY

UNTIL *>1000

fills memory with the code until the PC goes above address 1000, Note that * = 1000 was not used, just in case the code
stepped *over’ that address, in which instance it would keep looping until it tried to wrap round at 65535.

\

i

H
i ...,iﬁ
' .

The PDS 6302 Manual _ 16

DS - Define a space of memory
DFS

DEFES

BLOCK

Syntax : DS length of block [filler byte]

Is used for either

leaving or filling areas of memory. By entering :

Ds 20

the PC will be moved on 20 memory locations. Note when downloading the code the 20 locations will be filled with randor

data, you cannot

assume anything. If you wish to fill the 20 bytes with zeros then you should use

DS 20,0

The PDS 6502 Manual 17

DW - Define words
DFW |
DEFW

JWORD

This is similar function to DB, but defines word rather than byte values. There may be any number of parameters following
the command, all separated by commas, but will only accept strings one or (wo characters long. The expressions should

range from -32768 to 65535 As with .BYTE, .WORD is different in that if you don’t have a parameter following the
command, it will default {o the equivalent of DW 0.

\
i
Example; ‘\‘

DW 0,23,23%5,FRED+45,"ab"

For a faster way of storing data see HEX.

The PDS 6502 Manual

END - End of your program
END

Normally the PDS assembler will stop at the end of file even while assembling a program. By inserting an END stater

in the code, the assembler will stop at that point, Specify the execution address of your program by placing it after
end, for example:

END START

or
END $8000

Once the program is assembled an execution address is given. If it is downloaded, the target computer will automati
jump to this address. 1{ an execution address isn’t included and you download code after assembly, the target comp
will continue executing the download software. You may also specily the cxecution address with other commands
EXEC), you may only specily the start‘address once though. '

The PDS 6502 Manual 19

ERROR . = Stop the assembly with a user error.

Syntax: ERROR message

When the assembler encounters this line, it will terminate assembly and print the s;ﬁcciﬁed message in the command line
window. Once a key is pressed, you are returned to the editor with the cursor on the ERROR line. Normally this is used
in an’IF...ELSE,.ENDIF structure when something has gone wrong, or a condition has not been met. As with ASK and
QUERY, the assembler will convert the message into uppercase uniess a single quote is placed at the start of the message.
A terminating quote is not required, and if used, will be pristed as part of the message.
y

o \
Examples: B)
ERROR "Too many aliens! |

ERROR "Coordinates were off the screen

The PDS 6502 Manual

EQU - Equate a value to a label
EQUATE

EQU

DEFL

The line with the EQU must have a label at the beginning, The label will be given the value of the expression {ol
the EQU. The expression must return the same value on pass 1 and pass 2. No undefined labels can be used
expression. Therefore, a forward reference to a label would not be allowed in the expression.

DEFL and = are slightly different in that because they allow the fabel on that line to be used again, they are
re-definable. You can redefine these labels as olten as you wish, for example:

FRED = 2 1 FRED is set to 2
FRED = FRED+1 _ ;FRED is now edquals 3

This could be used in a loop. To fill 20 bytes with the numbers 0 to 20 you could do the following:

TEMP = 0
DO 20
DB FRED
FRED = FRED-+1
L.OOP

Normal equates cannot be re-defined, a 'multiply defined label” error will oceur if you try. Equates help to make pr
more readable by giving names to arbitrary figures.

The PDS 6502 Manual 21

:

EXEC - = Define your programs start address
START
Syntax: . EXEC expression

This will define the execution address of the program. By using an execulion address, after code is download, the target

computer will jump to it, If an execution address is not specified then the code will still be downloaded but the target

computer will continue rupning the download software. You may also define the start address by having it as an expression

after the END command.'If you wish to trace programs, or use the monitor, don’t put a start address for your programs.
\ .

i

The PDS 6502 Manual

FREE _ - Adds up free space in your programs

Syntax: FREE eipression

At the beginning of assembly, the assembler clears (he free memory variable, and every time a FREE command is issv
the expression following the command is added to the [ree variable. Al the end of assembly the frec memory is displa
in the command linc window. This need not be used for free memory, it could be used to telt you the value of a sym
or one particular address. To usc free to add up all free memory, insert a FREE pseudo opcode before each ORG, i

FREE $8000-%*
ORG $8000

I the PC was on $7FF2 before the ORG then FREE will tell you there are 14 bytes of frec RAM. Normally a FE
pseudo opcode is inserted before all ORGs, and a free at the end of the program with RAMTOP-* as the expression.
will then know the exact number of bytes available as free memory. 1f you don’t want to use FREE to add up frec mem
then the function has other uses, ie: '

i) Finding the length of routines by having a FREE END-START in your code.
you change the routine you don’t need to have list on to {ind out the routi
exact length.

ii) Displaying the value of labels, whose values can then be used in the monito
having FREE DATAAREA. The value of DATAAREA is printed a
assembly. '

The PDS 6502 Manual 23

HEX B i Define hex bytes

Syntax: ' HEX xx.....

PDS often uses HEX statements, because they are very fast, compact and easy to read. HEX is followed by 2 digit HEX
bytes, which may be separated with spaces or tabs. You can fit up to 57 HEX bytes on one 120 character line. We

recommended that you put all your data in this format, simply because it’s easy to use. If you have many DEFB’s, assemble
and download them, then upload them into HEX bytes using the monilor,

¢

The PDS 6502 Manual

Ir¥ - Conditional assembly . Ca

Also covered in this section

ENDIF
ELSE R
IFS gt
I¥F o

When assembling something depending on a condition, use the 'IF’ command. Ifthe expression after the IF returns a
zero value, then the code after the IF will be assembled. If the expression is equal to zero, the code will be ignored
an ENDIF is found. You may nest IF statements to a depth of 10, For example:

IF FRED=23

This code will only be assembled if FRED =23
ENDIF

You may also use ELSE to allow the assembler to assemble an alternate picce of code, if the expression is equal to:
eg: -

IF FRED

This code will be assembled if FRED < >0~
ELSE

This code will be assembled il FRED =0
ENDIF

IFF is similar to IF, but will only assemble the following code if the expression after the IFF contains a forward refer
This is nccessary because normal TF statements cannot have forward relerences in their expression as the assembler
to know the route of action on both pass 1 and 2. An error will be given if it cannot evaluate the expression compl
For an example of IFF see the cxample macros chapter. ' !

H

i
1FS is similar to IF, but is used for string comparisons, The code following will only be assembled if the two strings conl
in square brackets are equal. For example:

IFS [FRED] ([BILL]
this will not be assembled :
ENDIF

IFS [FRED] {FRED]
this will be assembled
ENDIF

IFS is mainly used in;macros, with parameters such as:
1

IFS [@1] [SCREEN]

You may use it to see if a macro parameter cx'ists eg:
IFs {@1] [}

You may compare the first string against a number of different strings. If any one of them is equal, the following co
be assembled, For example:

IFS [FRED] [BILL] [JOHN] [TONY] [FRED]

This will be assembled
ENDIF

Note: Due Lo the way the assembler works, all the parameters will be converted into upper case.

] The PDS 6502 Manual 25

INCLUDE - = Reads source code from the disk. file
"1 .INCLUDE
FILE
Syntax: B INCLUDE filename

When PDS finds an INCLUDE pseudo opcode in the source, it will try and open the specified file
{ .. and start reading source code from that file. When the end of the disk file is reached PDS will go
back to the line directly after the INCLUDE in memory. The ﬁlename may contain drive speci-

fiers and path names, for example: |

4

INCLUDE A: \PDS\GAMES\EMPIRE\GRAPHICS
INCLUDE FRED ‘
INCLUDE BILL,TXT

You may not nest include fifes, but you can have as many as you like in your main program. If there are large amounts of
_data in the program, preferabiy with no forward references (graphics data is a perfect example), store them in include
“files,i As data in include files is only read in on pass 1 (with skip working), on a hard disk INCLUDE’s are very [asl, so
=ssembly is ‘hardly slowed down. This means the largest program that PDS can assemble is determined by the size of the
' ':dtsk drives attached to the host system and the size of source in RAM.

HCG.{\ L ;

The PDS 6502 Manual

MACRO - Define a new command in the assembler
MACRO

Also covered in this section :

ENDM o
JLENDM '
EXITM

This pseudo op is used to gencrate new instructions for the assembler, To define a new instriction called FRED,
will insert four NOPs into the object code, the following code would be uscd: v 0

FRED MACRO
NOP
NOP
NOP
NOP
ENDM

This should be placed near the start of the program, before the macro is invoked. Whenever assembling FRT
normal instruction, four nops will be inserted into the code instead. You may have up to 250 dilferent macros. Y
not have macros with the same name as pseudo ops or instructions already in the assembler.

Paramelers may also be passed macros. Parameters should be separated by commas and are referred to in the
definition by @1 to @9. So if you invoked the above macro by using:

FRED bill,23,'hello"

Then @1 is set to 'bill’, @2 is set to 23’ and @3 is set to "hello™, Not¢ that macro parameters need not be expr

They are text strings that are inserted into the code in the macro in place of the equivalent @ number (@1 to @
cxample: '

SUM MACRO
LDA @1
@2 #@3
STA @1
ENDM

SUM FRED,ADC,3
SUM FRED, EOR, 23

You may also defihe labels eg:

VAR ' MACRO
e1 [, |
VARS = VARS+@2 ,
ENDM
VARS = $8000
VAR FRED, 2
VAR BILL,1
VAR JOHN, 3
VAR JANE, 1

‘The above macro is used to define variables in a data area, when each variable has a dilferent length, This is
variables necd not be tied to absolutc memory addresses. It is possible to insert or delete variables as they w
overlap, Also you can define labels within your program, when yoy niged them - you do not need to define them

bl

e T

The PDS 6502 Manual 27

3 at the start. In the above cxample the labels would have been defined in the following way:

i FRED : $8000
BILL : $8002
JOHN : $8003
JANE : $8006

A macro expression can be evaluated before it is inserted into the macro text, by proceeding the parameter number with

'@@' as apposed tothe normal *@", This is particularly useful if you wish to define a number of new labels within a macro.,
ie:

FRED ~_ MACRO ,

“vareer EQU % . s
b .. ENDM K

FRED 3#%2

This will create a varaible called "VARE within the macro FRED, while a normal macro parameter would have tried to

create a label called "VAR2*3,

If macro’s parameters are all expressions, then you can refer to them as labels within the macro:

'FRED- '~ MACRO JOHN,BILL,JANE
L - LDA JOHN

ADC BILL

EOR JANE

ENDM

| This has been included for compatibility. Assembling the macro with list on and list macro produces code for FRED 2,3,4
i as follows: '

JOHN =2

Fod: BILL = 3
5 JANE = 4 .
o i LDA JOHN
ADC BILL
EOR JANE

Macros can be nested to a depth of four, but may not be recursive. Labels can be used in macros, although it would be
best not to define any, as using the macro more than once will give a multiple definition error. To define fabels in macros,

_use local labels, ‘This will not affect other local labels of the same name in the source code, or in other nested macros,
Sce the following example: :

‘BILL MACRO
1 NOP

| JMP !1
ENDM
MACRO
BILL
JMP 11
ENDM

FRED
~JMP 11

produced is quite useless, but you can see that the local labels really are local. - Note that because local labels
omacros, you cannot reference a local label outside the macro definition. For example, using a macro parameler

'that the assembler would only search the macro definition for the 11, It would aot use the 11 from the source
Jed the macro. ‘

)

\ o

The PDS 6502 Manual

Macro parameters are separated by commas, leading and trailing spaces are not passed to the macro, H you wish to
the comma character then enclose the parameter in square brackcts,i for example: ~°

FRED 23,[45,56,67],98

Q1 = 23
@2 = 45,56,67 ')
@3 = 98 " ' ¥

EXITM is used with IF, IFF or IFS statements inside a macro, When EXITM is executed, the macro delinition halt
retucns to the main program - basically it is the same as an ENDM, except that uncompleted conditional structur
cleared. For example: '

i

FRED MACRO
IFS [€1] [
EXITM
ENDIF
ADC @1
ENDM

y
Kd

This example will produce no code if no parameter is given, else it will add the paramclcl: to A, Seethe examplen
chapter for more uscful examples.

i
f} % The PDS 6502 Manual »
% ORG - Setup the current PC.

. .ORG

ORG new PC {,true PC)

The ORG pseudo opcade defines a new assembly address, and updates the program counter accordingly. You may have
* upto 100 orgs in your program. The new PC must not be a forward reference, it shows where the code will be assembled
“to in memory. If you have a frue PC parameter, then all assembled code would use this value of the PC when the code
references the PC, but will actually insert the code at the memory pointed to by the 2w PC, When downloading the code
to the target compuiter, PDS will download the code in blocks, from the start of an org, to the end of a block of code, (hen
from the next org, and so on. If the program comprises two small sections of code, qne in low memory, the other in high
memory, then PDS’s download software would only download the two sections of code, not all the memory in between.

For example:
ORG $8000,%100

Would place the code in memory at address $8000, but the code would only run properly when moved to address $100,
This is useful for producing disk overlays, or routine modules that move in memory. To remove the 'PC olfscl’ just use
another org, without a tree pe parameter. If you wanted the code to continue after the relocatable routine at $8000 you
would have to use something like:

ORG *-$100+$8000

Now the rest of the code would fbllow on in memory, and could be run where it was.

1
i

If employing a number of ORGs in programs, there is always the risk that at some point you will have code that overlaps
other picces of code already written. PDS will not trap this as some people need to use memory dynamically. The only
way you can tell if you have overlapping code is when you have skip on. Instead of giving you a skip value, the display will
read "no skip'. If this ever happens, then go through all the ORGs in the code and find the one that overlaps other code.

You may ORG anywhere in memory, from 0 to $FFFF. ORGs do not have to be sequential, they can be abave or below
‘ 3@ one another, :

The PDS 6502 Manual

QUERY - Will get an expression from the user

QUERY must be used on a line with a label. 1t will temporarily stop assembly on pass 1, display any message after
QUERY pseudo opcode, followed by a flashing cursor. The user may {hen enter an expression or number, press ¢
and assembly will continue. The label on the QUERY line will then be assigned the value of the expression. Note !
due to the way the assembler works any text following the command will be converted into upper case. To uselower ¢
put a single quote at the start of your message, for example:

LIVES ~ QUERY "How many lives do you want @

Labels may be entered as part of the expression, so you can enter string responses to your QUes{ions by delining a
e AP ! ‘)

equates as below: .

COMMODORE EQU 1 ‘
BBC EQU O =
FRED QUERY "Which machine is it for :

.
4
S

If the user enters COMMODORE, FRED will equal 1, or BBC and FRED will equal 0,

A similar command is ASK,

The PDS 6502 Manual 31

RADIX o = Setup the default radix for the expression evaluator.
- .RADIX i
Syntax: . - RADIX expresﬁoﬁ

The radix pseudo opcode defines the default base for the expression evaluator. Anyvalue, from 2 to 16, can be used with
the RADIX statement, The default base is 10, If using a large amount of binary data, rather than putting % infront of all
the data, you could insert a RADIX 2 comymand before the data, and a RADIX 10\ command after it,

A ~_

For example:

RADIX 2 :

DB 10101101,10101010
DB 00101010,10101010
RADIX 10

Note: The expression following the RADIX pscudo op is ALWAYS in base 10 (the delanlt).

The PDS 6502 Manual ' ‘ 37

REPEAT - Repeats the following line a number of times.

Syntax: REPEAT expression

Repeat is used for repeating one instruction or any line a number of times. For example:

REPEAT 4
LSR A

This is equivalent of inserting the following in your code:

LSR A
LSR A
LSR A
LSR A

¢ ThePDS 6502 Manual | 33
% SEND - Tells PDS where to send the program once assembled.

. DLOAD

. DOWNLOAD

iy Syntax: SEND destination

bl . The SEND pseudo opcode is used to determine the destination of the objcét code, once a program has been assembled.
i., The destination can be ong of the following: ‘

- Via the serial port at 9600 baud ,
- Serial, 19200 Baud \
- Serial, 1200 Baud

ERIALS - - Serial, 300 Baud
COMPUTERO - Computer 1 port, 'nibble’ protocol
COMPUTER1 - - Computer 1 port
COMPUTER2 - Computer 2 port

If employing this command in your program, when assembly is completed you will be prompted "Download (Y/N)?". I
you hit any key other than [N} then your code will be downloaded to the specified destination. Once the code has beea
downloaded, the prompt remains on the screen, You may resume editing by hitting any key other than [Y]. Pressing [Y]
will download your code once again. While code is downloading the cursor will flash, If it secms to be taking too long,
then there is probably a fault in cither the download software on the target or the interface connections, You may press
[FINISH] at any time, to break out of downloading. In all other areas of PDS there is an automatic time-out while
downloading, but the assembler does not do this to allow you to get the target computer ready to receive the code.

The interface card inside your machine has two ports on it. You can download to different computers attached to these
by specifying COMPUTER1 or COMPUTER?2. Some computers such asthe BBC Micro need aspecial form of download
. software, which sends and receives 4 bits at a time rather than whole bytes, ‘To send in this format, use 'SEND
COMPUTERQO', with the target computer plugged into port 1. The send using the serial ports only needs to be used with
computers that do not have PDS interface available for them, but the protocols remain identical, The data is sent with 8
{ bils, 1 stop bit and no parity. You should go at the fastest reliable speed. Some machines are capable of 9600 baud, most
L are better at 1200, Not many can keep up with 19,200 baud. If you cannot get any resulls, even at 300 baud, then you
" must either have a faulty R§232 cable, or you have not setup the target computer properly.

The PDS 6502 Manual

SKIP . - Usedto Speed up assembly time

Syntax : SKIP expression

This command is specific to PDS, and enables your programs to asscmble at nearly twice the speed with no drawh
The command makes a note on pass one, of any large sections of program that doesn’t need to be reassembled aga
pass 2, these are then SKIPped over on pass 2. As a large amount of information has to be stored for every skip, th
~ a limit to how many ’skipping’ points PDS can remember. Therefore, alter assembly, the percentage of skip table u:
displayed in the command line window. 1If the skip percentage returned is 100%, then thé skip table has been filk
carly on in the program and has probably missed some blocks towards the end of the program. The best skip table
is about 80% to 95%. Thee is an expression after the skip command, [or average length programs this will range
about 15 10 30. This expression tells the asscmbler the minimum size of a block which contains no forward reference
can inserted into the skip table. So the lower the number, the larger the number of blocks that are added to table.
number is too high, very few or maybe no blocks will be found. If you have to use include files, try to have just d:
them (no forward references), that way they will only be read in once on pass 1, on pass 2 they will be skipped. T
ever displays 'no skip’ after assembly, then there is an ORG overlapping with a block of code previously coded, or yc
using the BANK command which disables skip. Skip must be placed at the start of programs, before any ORGs.

I

The PDS 6502 Manual ' ' 35

STRING - For défining strings ending in zero.

This has the same syntax as DB, but any text strings will have a zero byte added after the last character. This is similar to
E,lht‘. DC pseudo op. Many programmers use a zero to define the end of a message stored in memory.

Examples:
STRING 13,"cCat","dog".
. \ ¢ . i

produces : !

,‘~“_13'$43'$51’$74'0,$64,$6F,$67,0 [

e PDS 6502 Manual : 37

) Assembly listing related pseudo opcodes

ere arc a number of pséudo opcodes specilically designed for listing assembled text. These have been separated from
 main pseudo opcode list, as we felt they needed to be explained together.

ST
IST
ST

| the above commands have one of three parameters, ON, OFF or MACRO. LIST ON and LIST OFF control the
" output to the screen. When 'LIST ON’ is sclected, you will see the source code displayed in the current window,
... it is assembled on the second pass. The listing produced is similar to thz sample listing below:

J000: © ORG 10
300Aa: 00 NOP
300B: OO0 : NOP
000C: END

e first HEX number at the start of each line shows the current address of the program counter, and any code on that
e will be assembled to this memory address. The character directly lollowig the HEX number shows the action (aken

' the assembler for that particular line. A colon (:) significs that the line has heen assembled. A '+ means that the line § :

s been ignored, this would occur if an "1 structure had failed at that paint. The only other alternative isa'>’character,
is means that a macro definition was decoded at that particular line. The next list of HEX bytes represent the value of
e byles that were assembled for that line, a maximum of 5 bytes can be disglayed at that position. 1M an’IF or "TEQU’
atement was assembled on the fine, then the resull of expression is displayed instead, this allows you to see what the
pression was evaluated to in the listing, An example ol this is shown below ;

COOE: 0017= FRED EQU 23

g,th;? case fred was assigned the value 23, so at the start of the line 0017 = was printed.

hen listing to the screen any character going off the cdge of the screea will be lost.

ormally when you list a macro call, the assembler will print something like this:

000F> 00 CAT

his isa macro called cat, which produces asingle zero byte. Iyou wanledtosee exactly what the assembler was assembling ¢

 the macro, you could turn LIST MACRO on. The default is off, by using the instruction LIST MACRO, you toggle the
ption on and off. With LIST MACRO on, the above example could look like this:

Q00F> CAT
000F> 00 _ NOP
0010> ‘ ENDM

‘his macro is very simple, in fact all it does is insert a NOP, but you can now sce the assembler’s action.

istings to the screen do not use most of the list oplions (see LSTOPT), but'are paged, so thal once a page is printed, a ?

ey has to be depressed before the next page is displayed, For a very fast continuous lisling, just hokd down a key.

The

LL
LL

Are
you v
Ther

PR

This
the p

Woul

SKI

This |

This

PAC

This ¢

PAG

Will i

PAG

will d

PAG

The fi

PAG

1N "o OGous Ivianmeil

LLIST
LLST

Are the same as LIST, except they output the listing to the printer. You may print to either screen or printer, or both if
youwish, Nole that LISTMACRO applies to both printer and screen, for example, LLIST MACRO will not bc acccpled
There are many commands for configuring the printer, while printing listings. These are:

PRINTER

This works in the same way as define byte (DB), but all the parameters are sent to the printer. Thls aIlows you to setup
the printer with specmhzed control sequences, for example:

i
PRINTER 27,"@", 12

., Would initialize and do a form (eed on Epson compatible printers,

SKP

This pseudo opcode needs just one parameter, and sends the specilied number of line feeds to the printer, ie: | .

SKP 5

This would send five line feeds to the printer, and would leave five blank lines in your listing.

PAGE
h

H

This command has a number of dilferent syntaxes, these are:

PAGE (no parameters)

Will issue a form feed to the printer, moving the paper (o the next start of form.,

PAGE expression ‘ (parameter 15 to 255)

Will define form length for the printer, ie the number of lines per page.

PAGE expression , expression

The first expression delines the maximum line width, and the second expression defines the form length.

PAGE "annnn

The PDS 6502 Manual ' 39

1

This will issue a form feed to the printer, then defline the current title fer the code listing, This is equivalent to an EJECT
and TITLE used together. Nole that you need an initial quote in [ront of the text expression, olherwise the rest of the
text will be converted into upper case.

o

Willissue a form feed to the printer, ie move the paper to the top of form, This perlorms exactly the same task as a PAGE
instruction by itself.

TITLE "nnnn
TTL

This defines the current title, which will be printed at the top of cach page (centered) from this point on. This can also
be achieved by using a PAGE "nnnn instruction. Nole that the title will be converted into upper case unless a single leading
quote is included in the string expression,

SUBTITLE "nnnn
STITLE - -
SUBTTL

This will define the current sub-title that will be printed at the top left of each page. Note that the title will be converted
into upper case unless a single leading quote is included in the string expression.

r

WIDTH expression

This will define the maximum line length. Any line longer than this value will either be split or truncated, depending on
the current list options (see LISTOPT).

The PDS 6502 Mauual 40

LISTOPT

LSTOPT

Syntax:

LISTOPT expression

This will set and resct the list option Nags. The specified expression will be XORed with the current option flags. So
LSTOPT 5 followed by LSTOPT 1 is exactly the sathe as using LSTOPT 4. There are 16 different list options, each bit -
in a 16 bit number performs a single task, Therefore, most people define list options in the following way:

LSTOPT 1024451244+2+4+1

This is easier to understand, and use, than working out the exact 16 bit number manually, as each used can be easily
distinguished. The full range of list options follow:

1

4

16
32
64
128
256
512
1024
2048
4096
8192
16384
32768

FUNCTION

Line numbers printed at the start of the line

Add time and date to the top of pages

Add versionnumber to top of pages

Add a page number in the top right

Add a page number in the bottom left

Print file headers from the RAM source

When include files are started print a small header
Print printer pseudo ops (eg: PAGE, TITLE...)
Print symbol fable in PC order (else alphabetically)
Remove $ or & from the end of the PCvalue
Don’t do pages, just continuous listing

Truncale text at the end of line

Same as LIST MACRO when enabled

Add a file number in the top right corner

When text wraps, print 3 tabs, (else justa;)

Global ignore all list pseudo ops

When a particular bit is set, then that function is selected. LISTOPT defaulis 1o value of 0.

‘Most functions are quite obvious and change the format of the pages being printed. The following require a little

explanation:
N
~ Option 1

Option 32

Option 64
Oplion 128

Option 32768

Thiese are line numbers that can be referenced using editor functions. This also
means that line numbers re-start from 1, at the beginning of any file, either a
memory file or a disk include file,
Will issue a form feed then print the PDS start of file header when the start of a
file is printed. Otherwise there will be no break in the source code as the
assembler moves from file to file.
Allows you to see which file is being included.
Will make PDS print all the printer pseudo ops to the printer - these are normally
‘not sent to the printer, as list pseudo ops only change printer formats and do not
%f’neratz; any code. . _ ‘ .

hen bit 15, or 32768 is set, all following printer commands (including LSTOPTs)
will be ignored, until another LSTOPT is executed that flips bit 15 (32768). S
if you globally wanted to ignore all printer commands you could do: :

LIST OFF
LSTOPT 32768

Now, whatever you try, even LIST ON, will be ignored. When requiring (o ignore all the printer commands and just get

a listing vse:

The PDS 6502 Manual

LIST ON
LSTOPT 32768

41

The PDS 6502 Manua! . : 43

4.1. Example programs

PDS is very [lexible in allowing many dilferent syntaxes for most pscudo opcodes. Although there are one or two
commands that you will find in every program, below is an cxample *shell” of a PDS program :

LY

SKIP 20 ;jTurn skip on for speed
ORG $8000 ;Must be after skip

¥ program source code **

SEND COMPUTERL jDownlcad after assembly
END start ' ;End source and give program execution a

The minimum source you need in a your source code is an ORG, otherwise PDS will not know where to assemble the
source code. Without the SKIP function, assenbly time will increase, without the SEND pseudo opcode no download
prompt will be given after asscmbly, without the END pseudo opcode, assembly will only terminate at the end of file 7.

Below is an example program lor fashing the screen on the Commodore or BBC.

e ma ma

ORG $7000
SEND COMPUTERL

!
COMMODORE EQU 1

BBC -~ EQU ©

i

COMPUTER QUERY “Enter computer for (BBC, COMMODORE) :
i

START LDY #0

IF COMPUTER

SCREEN EQU $400
ELSE 1Work out screen start
SCREEN EQU $7C00

ENDIF

The PDS 6502 Manual

BEGIN LDA
JSR
LDA
JSR
DEY
BNE
RTS

FILL LDX
11 STA
STA
STA
STA
DEX
BNE
RTS

END

#32

FILL
#127
FILL

BEGIN
#0

SCREEN, X
SCREEN+$100, X
SCREEN+$200, X
SCREEN+$300, X

Il

START

;Fill screen with spaces
;F111 screen with blocks
;Repeat 256 times

jReturn to downloader

;Fill 1024 bytes

;Jump to START after downleoading

When assembling this program, you are prompted toenter either BBC or COMMODORE. You will then, almost instantly,
be asked if you wish to download, if you press any key other than "N’ then it will be downloaded and run the program on
the target computer. The screen should (lash for a few seconds, then return (o the download software with the screen

totally filled.

The PDS 6502 Manual . 46

4.3 Example macros in the PDS 6502 assembler

Macros are very useful, they can save typing, memory, and improve source code readability. Here are a few sample macros
that you can try to understand, or even use.

Jcc MACRO -
IF (@2-%<130) ! ($-082<126)
IFF @2
ELSE
B@1 @2 .
EXITM :
ENDIF
BE1 !1
JIMP 12
11 - - JMP @2
12
ENDIF
ENDM

This macro expands the 6502 instruction set. Instead of entering "Bec addr (where cc could be a condition, ie NE, CC,
EQ, CS etc.), and being unsure if the branch can be made, it will insert a branch if a branch is posiible, otherwise a jump
is inserted instead. Note that this will always use a jump if you have a forward reference to a label, simply because it cannot
know how far away the label might be, For example:

FRED NOP
JCC EQ,FRED

Will generate a BEQ FRED, and

FRED DS 300
JeC NE,FRED

Will generate :

BNE !1
JMP 12
11 JMP FRED
12
ZVAR MACRO
g1 EQU ZLIM
ZLIM = ZLIM+@2

IF ZLIM>255

ERROR "Out of zero page work space with variable @1
ENDIF :

ENDM

This macro allows you to define zer‘o‘ﬁage variables automatically. An error will be generated if you try to use work space
above $FF, as this is no longer zero page, and could start to corrupt the stack. An example of its use can be seen below:

The PDS 6302 Manua_!

47
ZLIM = 2
ZVAR XVAL, 2 ;Allocate 2 bytes for yvaL
ZVAR YVAL,2 ;Allocate 2 bytes for vvaln
ZVAR TEMP, 1 ;jAllocate 1 byte for TEMP
ZVAR TABLE, 250 iThis will generate an error as

zero page

These types of macros are useful, because you never need to allocate memory addresses yourself, which means they can
change automatically. This also prevents you from having overlapping variables, which is a common programming error.

1f using many ORGs in programs, you find.that they often overlap, ic 'no skip’ is displayed at the end of assembly. You
can use a macro to perform all the program ORG’s, and trap any overlapping, ie:

CORG MACRO
IF s@l
ERROR "Overlapping code at address @1
ENDIF
ORG @1
ENDM

Now instead of ORG, use CORG address and your code will be checked for overlapping sections automatically, This
macro is also useful when using banked RAM, as SKIP is then disabled and will not indicate overlapping code.

The PDS 6502 Manual 48

5.1 The PDS Download Software

The download software has been written over a period of time, and has been heavily optimised for speed and size. All

the different types of download software are supplied on the master disk, with all the PDS soltware. There are three main

types of download software:

Short *duml’ download software (¥.DL0)

This is the shortest possible software that allows you fe. download and execute code. This should be used when free
memory on the target machine is restricted. It will not operate correctly with most monitor commands, such as mod:fy, i

although commands such as fill, that oniy download data, will still operate. This version is also useful when writing new
download software, or the sof[warc has to be typed, iz an emergency.

Long *clever’ download software (*.DL1)

When you purchase a target computer interface, this version of soltware is supplied on tape or disk. It will allow you to
use all the monitor’'s features (except analyze which requires the DL2 version download software), while still allowing you -

download and execute a program from the assembler.

Interrupt driven software (*.DL2)

This is the download software that runs under the interrupts and allows you to use most moniter commands while your
program is running on the target computer. This aliows you to watch areas of memory change, stacks building down, or
modily variables while a program is running. You may not alter registers or trace from the monitor, as this would cause
data areas to clash and not be of much benefit. It is useful to insert the source code of the downloader within your own
program while it is being developed - this make debugging faster and easier.

All the download software can be positioned anywhere in memory, and run completely independently, with all data arcas
sell contained. You are free to rewrite them if you wish, and mould them to suit your own requirements. They can be
made substantially faster by removing the CALLS to the GETBYTE and SENDBYTE routmes in the upload and
download loops, and replacing them with an exact copy of the actual routines.

DLO and DL1 both have the interrupts disabled, this allows you to download programs over operating system workspace,
-or over interrupt vectors, without crashing the target machine.

When downloading programs, ensure that you do not download over the downloader itself. This applies even when you
are downloading the download software itsclf, as self modifying code is used in all versions of the software. Although this
sounds obvious, you will be surprised the number of times this will happen to you, and could leave you with mystilying
crashes.

Most users load their download software of tape or disk, into a completely [ree area of memory. This will then allow them
to return to the downloader at any point, to download new code, so speeding up development greatly, and saves having to
continually reload the download software. On the Commodore 64, $C000 is normally a good location for the download
software, while $1900 can be used on the BBC. Some 6502 programimers position the download software at the boltom
of the stack, this will save memory and keep the download soltware out of the way.

When you first setup the PDS, it is normally best to make up your own version of the download software, and save it to
tape or disk, To do this load the correct download software into PDS (either C64 . DL0 or DL1), change the ORG at the
top of the source, to the required address (remember, avoid overwriling the present download software). Load the
supplied download software into the target computer and assemble and download the new download software. Y.ou should
now save it to disk or tape.

LY

5.2 The PDS download software protocols.

There now follows a complete description of the 6502 communication protocols used by PDS soltware. The software is
designed to be machine independent, so the same protocols can be used, regardless of the target machines processor or
make. Al the communication is basically the same, there are four major routines, SEND BYTE, GET BYTE and two
direction swapping routines. These have been optimised as much as possible and all the data formats are as compact as
possible. For example, if you had a small picce of code in low memory and a small piece of code in high memaory, then
PDS would automatically download two small blocks, instead of downloading the memory in between as well. There now
follows a description of the main parts of the downloading system on the target computers.

The interface hardware
The target machine interfaces are quite straight-forward. They have eight bi-directional data lines, which are buffered,

one input {lag and one output flag, which are also buffered.

Initialization of the download software

7 The first thing the software must do is to setup the direction of the cight data lines, these should start inputting from the
main computer. The output flag line must be set to 1, when the machine is [lirst turned on, this line should not be toggled
on initialization. : ' . ‘

‘The main loop of the download software

At the start of the main loop, you must continually read in bytes from the interface, until a command byte is received (from
180 to 187). The correct routine must then be entered, to perform the required function. PDS may sometimes send a 179
padding byte, this should be ignored by the downloader, and is only used to make sure that all blocks of data are an cven
number of bytes long. This ensures that the handshaking lines are always in the same state at the start of each function,

Each command byte is now explained:

The PDS 6502 Manual 51

Command 180 - Download code

This will download an area of memory from the main computer into the target computer. This command is present in all
download software and is used by the assembier for downloading programs. Note that programs will be downloaded in
blocks, from the start of one ORG, to the beginning of the next or the end of the program. Monitor commands such as
fill, use this command. After the 180 command byte, the start and length addresses of the code are downloaded, in that
order. All addresses are downloaded high byte first, followed by the low byte. A length of zero, is actually a length of
65536. Once the length is sent, the block itself is then downloaded into the specified memory addresses. The downloader
now re-enters the main loop. For example, to download four bytes (255,65,23,45) into address $8000, the following
command block would be sent to the target computer:

179 - Padding byte

180 - Command, download

$80 - Start address, high

0 - Start address, low

0 - Length, high

4 - Length, low

255 - 1st data byte

65 - 2nd data byte

23 - 3rd data byte -
45 _ - 4th data byte

The PDS 6502 Manual

n
[

Command 181 - Jump to an address

- This command will download an address from the main computer and 'JSR’ to it. Ifan RTS is executed, then control will
return to the main loop. This command is also found in all versions of download software and is used by the assembler if
you specify a start or exec address for the program. The main computer will always send a padding 179 byte, as there are
only three bytes in the main command. For example, to execute a routine at address $1234 the following list of bytes would
be sent:

179 - Padding byte
181 - Command, Jump
$12 - Start address, high

$34 - Start address, low

The PDS 6502 Manual 53

Command 182 - Upload memory

The DLO software does not support this command. Tt is similar to the download (180) command in format, except that
after the length is sent, the ports are reversed and the requested block is sent up to the main computer. Once the data
block has been sent, the ports are once more reversed, and the main loop is entered. For example, (o upload three bytes
from the target computer, starting at address $1234, the following would occur:

179 - Padding byte
182 - Cominand, upload
$12 - Start address, high
$34 - - Start address, low
0 -« Length, high
3 - Length, low
. Reverse ports (flags act as if half a byte has been sent)
77 - 1st upload byte
77 - 2nd upload byte
77 - 3rd Upload byte

Reverse ports (Like half a byte again)

Note that the two reverses of ports act as if one byte has been sent, hence the need for the padding byte.

A

Ane DS 60U2 Manual 54

Command 183 -~ Select bank .

All version of the download software have this command. The assembler uses this feature in the BANK command, the
monitor uses it in the Z command, The main computer just sends the byte given in the command, unaltered and expects
the target computer to act on it accordingly, in whatever way you wish the command to be used. You will have to write

the code to support this command if you have a special use forit. Thisisa simple two byte command, 183 followed by
the bank number,

183 - Command, select bank
777 - Bank number

The PDS 6502 Manual 55

Command 184 - - Send all registers to the main computer

This is only in the DL1 version of the software. It is used in the tracing and register related functions of the monitor. A
block of 26 bytes are sent to the main computer. This block contains all the 6502 registers, and is uploaded using the
Upload command (182). The registers are setup for 26 bytes and the start of address of the upload is setup by the
downloader itself. Bytes are sent as follows;

179 - Padding byte
184 - Send registers command

Reverse ports (same as sending half a byte)

Y

7 data bytes are sent

Reverse ports back (same as sending half a byte)

There is no padding byte, because the length will always be an even length. The register block is stored in the following
order;

P - Status register
A
X
Y
S - Stack pointer
- PC - Low
PC - High

The register block is updated when the download software is first entered, when you jump out of the download software.
All the registers are loaded with values from this table.

50

Command 185 - Get registers from the main computer

This command downloads a 7 byte register block from the main computer. The registers of the target computer will be
loaded with these values when the download software is jumped out of. The register block is in the same format as the
184 code. This command is only found in DL1. :

The PDS 6502 Manual ' 57

Command 186 - Trace code buffer

This is the main command used by the tracer, and is only found in DL1. Three bytes are downloaded after the command
and are stored in a buffer. The registers are loaded from the register block, and the four byte buffer is executed, The
registers are then saved back into the register block and the main loop entered. Note that the code executed in the buffer
has to be carefully chosen - if you were to execute Jumps then the download software would lose control, and function
incorrectly. If the instruction you wish to execute is shorter than three bytes then the rest of the buffer must be padded
with NOPS. The tracer handles this all automatically, so you need not worry, but it is important that you are aware how
the system works. The tracer will emulate some instructions itsell, such as jumps and just move pointers. When the tracer
comes across an instruction such as ’ADC #273’, then it will download *ADC #23, 'NOP’ into the instruction buffer. The
bulffer is then executed and the register block is uploaded, to see what was altered. '

Command 187 - Return Analyze address

This command is only used in DL2 software. It will send two bytes up to the main computer, containing the address of
the PC, when the interrupt occurred. The analyze command in the monitor uses this command, to wark out where the
program is spending most of its time,

The PDS 0502 Manual 50

53 The control lines during PDS communication

There now follows a description of the four low level routines in PDS’s communication software, Note that the protocol
does not st the control lines directly, but toggles the lines to communicate. Allthe protocols are designed so one computer
can never get ahead of the other, even if there is a big speed difference, There are no error checking protocols, as the
interfaces are very reliable, and error checking will siow down processes, and no real action can be taken, even if an error
was detected,

SENDING A BYTE TO THE TARGET COMPUTER

i) The main computer puts the byte on the data lines, then flips its output line. The

main computer now waits for the input line to change state.

ii) The target computer waits for the control input to flip, the byte on the data lines
is then read in and its output control line is toggled.

iii} . The main computer initiates this process first, and the target computer should

finish the process first.

GETTING A BYTE FROM THE TARGET COMPUTER

i) ‘The main computer waits for its control input to flip, then reads the byte from the
- data bus, and flips its control output.
i) The target computer puts the byte on the data lines, then flips its output line. It
then waits for it’s input control line to flip.
iii) The target computer starts this process first, the main computer finishes first.

SWAPPING PORTS, FROM Main --> Target TO Target --> Main

i) The main computer flips its data lines direction and then its control line.
i) The target computer waits until the control input flips and then reverses the
direction of its data lines.

iii) The main computer starts this process first, and is finished first.

SWAPPING PORTS, FROM Target --> Main TO Main --> Target

i) The main computer waits for its control input to flip, then changes the direction
of its data lines. o ‘ . o

ii) The target computer changes the direction of its data lines, then flips its control
output,

iii) : The target computer starts this process first, and is finished first.

6.1 The PDS 6502 Monitor system

You many enter the monitor at any time from the main PDS editor by pressing the [MONITOR] function key. In the
monitor the screen is divided into two areas. The top two lines of the screen show the 6502 registers and their values. The
main area on the screen is the command area.

You may use the cursor keys to move around the command area, [HOME] will move you to the top left of the screen.
[CTRL] and [HOME] will clear the screen and move you to the top left corner of the display.

If you press cursor left at the beginning of a line, the cursor will move to the end of the previous line. Commands may be
entered in upper or lower case and must start in the left hand column of the screen.

You may return to the editor from the monitor by pressing the [FINISH] function key, The monitor screen will be saved,
this allows you to flip between the monitor and editor without loosing any work.

To execute a command, place the cursor anywhere on the line with the command and press [return], PDS will then execute
the command, ignoring any extra characters after the command.

. Youdo not need a target computer attached to your system Lo enter the monitor. If you are using the 'Clever’ PDS software
en all the monitor commands will function as normal. If you are using the 'Dumb’ download software then only a few
modnitor commands will work. The others may give unusual responses or error messages.

“When a moaitor command fails or contains an error, PDS will put a question mark at the end of the line and beep. You
may then correct the error and press enter on the line to execute it again. If there is something wrong with either the
download software or the link between the computers you will get an error message such as:

Error, other computer not receiving

When you get an error like this first make sure that the target computer is running the download software. Then check the
connection between the main computer and target is secure, If the error persists then you must assume that there is
something wrong with the download software, or it has been overwritten.

B .

The PDS 6502 Manual 61

6.2 Thé PDS monitor commands.

On the [ollowing pages the PDS monitor commands are listed, their syntax explained, why they may not work and examples
on their use,

In all commands the expressions that you use are evaluated using the assemblers expression evaluator, This means that if
you have just assembled a piece of code then you may use the labels in your expressions, for example, DSTART would
disassemble {rom the label START. The evaluator has been expanded (o allow you to access memory locations, you do
this by putting curly brackets around the expression. The value within the brackets will be evaluated and used as an address.
The byte at this memory location in the target computer will be returned, For example, B FRED,{ FRED} + 1, Would
increment the byte at location FRED. You may also return a word at a memory address by using square brackets, for
example, M[FRED] would modify memory pointed to by the word at location FRED. Quite complex expressions may be
built up using these sets of brackets, In both cases there is no limit on the number of times the brackets may be nested.

Some monitor commands don’t require any target computer attached, they are : L,O,P,Q,V,X.

Most commands need some sort of target computer attached and running the appropriate download software. There are
three types of download software we supply :

DLO - This is the shortest and can only download and run programs. It is meant to be
used with the assembler when space on the target computer is at a premium. Some
monitor commands will operate with this download software. They are : B (modify
only), E, F, G (although it will perform a Jump), W (modify only), Z.

DL1 - This is the longest download software, about 400 bytes. It will work with all the
commands, except Analyze, which requires the download software under the
interrupts. This should be used if possible, else DLO. '

DL2 - This is designed to be called from your interrupt routine, it will work will all the
commands except R,T, as it cannot trace or alter registers. Its main use is to
examine your variable area during the running of your programs, or to analyze the
programs execution, or to modify data while the program is still running,

If you have the incorrect download software in the target computer, then you may get unpredictable errors, or commands
may not work at all.

10C LS 0OUL Manual 62

A - Analyze a programs execution

This can be used in three different ways:
1] A
This will repeat the last Analyze command, or A0,65535,1 if not used before,

2] A start address , end address

This will analyze between the two adresses, the whole of memory is 0,65535,

3] A start address , end address , count value

This is the same as 2] , but sets up the count value as weil. The count value remains set until it is changed again. It starts
being set to one.

" his will give an error if:

“there is a fault in the link to the target computer }
The DL2 type of software is not running under the interrupts

Analyze is designed to allow you to see where your program is spending most of its time. Install DL2 download software
in the target computer, running under the interrupts of your program. When your program is running type A0,65535,1 -
This will display a bar graph, each bar covering about 4K of memory. PDS will print one star on a row when an interrupt
occurs in that address range. To make it more accurate you may set the count value higher, this tells PDS how many times
an address must occur before a star is printed. Once a bar reaches the other side of the display, that shows where your
program is spending most of its time, now narrow the address range eg ;

A 1000,2000

Keep doing this until you have an address range of about 100 bytes, this will be the most used routine in your program,
optimise this one section of code and youwill see significantimprovements in the speed af your code. The minimum address
range is 15 bytes. It will take slightly longer to produce a bar graph as you narrow the address range because it will not
interrupt as often in that area of memory. The analyze command will not work properly if your program waits for VSYNCs,
or other timed, as interrupts may always occur at this point in the code. Removing these waits will make this feature usable,
and we are sure that you will find this command invaluable, : o

P

o)

The PDS 6502 Manual

B | - Change or display a byte at a memory location

63

There are two ways to use this command:

1] B address

This will display the byte at the address given. The value will be displayed in hex, decimal, binary and ascii.

2] B address , byte value

This will move the byte value into the address given.

address
This is the address of the byte to be changed

byte value
This is a byte value, from -128 to +255 '

This will give an error if:

The byte value is not in the range -128 to +255
There is a fault in the link to the other computer
1] Needs the clever PDS download software

2] Only needs the dumb download software.
NOTES:

The W command has the same function, but works on words instead of bytes.

This command is mainly used for altering values in your program, to quickly see the effect of small changes.

EXAMPLES:

B$S4000,23
This will load the location $4000 with the value 23

B FRED, {FRED}*2
This will double the byte value at location FRED

43 LA VoL Ividal il dl 64

C - Copy block of memory

Cstart address , end address | new start address

start address
This is the first address used by the block to be moved

end address
This is the address of the last byte in the block

new start address

This is the position that the new block will start from

This will give an error if

The end address is lower than the start address.

The new block goes above SFFFF or 65535,

The "clever’ PDS download sofltware is not being used.

- There is a fault in the link to the target computer,

NOTE:

The new block can overwrite part or all of the old block. PDS uploads the whole block into the main computer, then
downloads it at the new location. This requires the download software that can send and receive blocks of memory.
EXAMPLES

C0,$3FF,$4000

This will move the first 4K of memory to memory location $4060

C VARS, VARE , NEWVARS

This will move the memory from VARS to VARE and place it at NEWVARS onwards.

The PDS 6502 Manual ' ‘ 65

D - Disassemble memory

This command can be used in three ways:
1] D

This will disassemble a block of memory starting from where the last disassembly finished.

2] . _ D start address

This will disassemble a block of memory starting from start address

3] D start address , end address

This will disassemble a block of memory starting from start address and ending with end address

4] - D# start address, end address

The code between start address, and end address will be disassembled and inserted at the current cursor position in the
editor, This is extremely uscful when you wish to compare code, or examine other programmers code in more detail.

-The PDS disassembler is a symbolic disassembler, This means that if a program had just been assembled, the disassembler
will use them when it generates a disassembly, To use symbolic disassembly, ensure that the Q5 option has been correctly
setup (see chapter 6.3 and the 'Q’ command in the monitor for more details).

This will given an error if: :
The targel computer is not running *clever’ download software
The end address is less than the start address

NOTE:

The disassembler uses standard 6502 pesudo ops. When it comes across an instruction that it cannot disassemble it will -
print DB followed by the bytes it did not understand. For example: :

8000: FF ~ DB SFF

If type 3} (D start address,end address) is used then PDS will disassemble very quickly, it will stop when any key is pressed,
and wait until any other key is pressed before conlinuing, pressing [FINISH] or [ESC] will stop the disassembly.

e e R

E - Enter a program

E start address
start address

Is the address of the first byte of the program

This will give and error if:
There is a fault in the link to the target computer.
Only the dumb download software is needed.

NOTE:

This command is used for entering programs when you are given the program in hex or decimal. As you enter the program,
PDS will disassemble it when you enter whole instructions. For example if you had the program 88,8C,03,02,60 to g0 at
$8000 then you would enter:

_E8000h

Then type 888C030260, while you are typing, PDS will print on the display:

8000: 88 DEY

8001: 8C 03 02 STY $0203
8004: 60 | RTS

8005: *

This is very useful as it allows you to check the program you are entering for mistakes.
To stop entering a program, press [FINISH]
Note that PDS only sends the bytes down to the target computer when a whole instruction has been entered.

When you arc entering hex, PDS will allow you to delete characters entered wrongly. If you press delete when the cursor
is next to the address then the address will be decremented by one.

When you enter programs in decimal, press enter or comma after cach byte entered.

Hex or decimal program entry and the format of disassembly may be changed using the config system or ’Q’ options
command,

The FDS 6502 Manual 67

F - Fill memory with data

F start address , length , data byte(s)

start address
This is the address that the fill will start from

length _
This is the number of bytes that will be filled

data byte(s) "

This can be any number of bytes. The memory area will be filled with this pattern of bytes

This will give an error if:

The length is zero,

There is a fault in the link to the target computer,
Only the dumb download software is needed.

NOTE:;

Memory can be filled with either a single value, or a pattern. For example to filf the first 4K of memary with 0 you would
use! ' '

F 0,4096,0
To fill the first 4K of memory with the repeating pattern 1,2,3,1,2,3,1,2,3..... enter:

F 0,4096,1,2,3

Aaave L LA UUVL YAl dl 63

G - Call a routine and return

G start address

Start address
Is the address that will be called

This will give an error if:
There is a fault in the link to the target computer.

NOTE:

This will use the download software to call the routine. This means there will be a return address on the stack. If a return
is executed then it will go back into the download soltware. If you don’t want a return address on the stack and you don’t
need to go back into the download routine then use the *J’ command.

" "This command is mainly used for testing routines. If you first use the R command to setup register values, then Groutine
address then use the R command again to see how the registers have changed. For example:

R X=23,Y=2
G MULTIPLY
R

If you only have the DLO type download software in the target computer, then the routine will be JUMPED to, not called.

The PDS 6502 Manual 69

J - Jump to an address

J start address

start address
Is the address that will be jumped to

This will give an error if:
The 'CLEVER’ PDS download software is not being used.
There is a fault in the link to the target computer.

.

NOTE:

This is similar to the G command, but executes a jump.io the routine, This means that a return will not return you to the

download software, your program will have to jump back into the download software itself. This is mainly used for jumping
into the middle of a routine after setting up all the registers. e

ne rlio 00UZ Manuai 70

L - Loop and execute commands quickly

3

This command is used to execute a string of monitor commands one after the other very quickly. What you do is type all
the commands starting in the top left of the screen, and place an L at the end of them. When you press enter on the line
with the L, PDS will do a’HOME’ and keep doing returns, executing any commands it comes across. For example, clear
the screen using control home and press M (return) then L (return). You will see a block of memory rapidly changing.
PDS is exccuting the M command, then looping and executing the M command again, over and over. To stop PDS, press
any key. When PDS reaches the L command it will stop looping. If any of the commands give an error, then the loop
command will also be stopped.

A common use for this command is for download software running under the interrupts, while a game is playing for
example. To have the command M DATAAREA looping. This will show you the data area changing as the game is'being
played. You could also modify the stack and see it build up and down, or the keyboard buffer. '

You may build up very complex loops such as :

'R X=23,Y={BILL}

‘G MULTIPLY

W [STORE], [RESULT)
W STORE, [STORE]+2
B BILL, {BILL}+1

L

IFMULTIPLY is a routine that multiplies X by y and returns the result in a location called RESULT, then the above string
of commands wilf build up a table of results from the address in STORE onwards. Note if you wanted to stop the above
loop when a certain address in STORE was reached then you could add the following command to the loop:

&

X 1/([STORE]-ENDADDR)
* Which would stop and give a division by zero error when the contents of STORE was the same as ENDADDR.

Loop is a command that may not be immediately useful, but becomes invaluable after a while.

-3

The PDS 6502 Manual 02|

K | - Enter sprite grabber

Kx bytes, y pixels

The sprite grabber is one of the most recent and powerfuf additions to PDS. Use the 'K command to enter the sprite
grabber, with the values byfes, the width of the sprite to be grabbed in bytes, andy pixels, the height of the sprite in pixeis,
The sprite grabber is only intended for use with a bitmap screen, so before you perform any sprite grabbing, ensure that
the correct target computer has.been selected using the 'Q1’ option, and the correct screen base address has been defined
using the 'P@’ option. '

When the sprite grabber is first entered, the sprite cursor is positioned at the top left of the screen, at co-ordinates 0,0,
The following sprite information is displayed while you are grabbing sprites:

Sprite size 4,16

Use cursor keys and :

Enter - Upload sprite.

Space - Invert sprite

Esc = Return to monitor

Sprite number 00, screen address $4000, pixel position 0,0

The sprite cursor appears at the top left of the sprite to be grabbed, as an 8 by 1 pixel line. The cursor keys on the PC can
be used to move the sprite cursor, and will update the current screen address and pixel positions accordingly. Pressing
[SPACE] will invert the current sprite under the cursor, this aliows you to see exactly what screen area the cursor covers,
Press [SPACE] again so that the sprite reverts (o its original state, before the sprite cursor is moved again, Pressing the
(ENTER] key will upload the sprite into ’HEX’ statements to the current text cursor position in the editor, and increment
the current sprite number, The graphices editor header will also be inserted at the begining of the sprite data. The sprite
is uploaded in left to right, top row to bottom row format, and can be read into the graphics editor without modification,
as long as its size can be catered for by the graphics editor.

Different types of cursors can be used by the sprite grabber, these can be set using the *Q8’ option, see the *Q’ command
and chapter 6.3 for more details,

The PDS 6302 Manual 72

M - Modify a block of memory

This command can be used in two different ways:
1] M
his will modify a block of memory starting from where the last modify command finished.

2] M start address

This will modify a block of memory starting from start address

This will give an error if:
The target computer is not running the clever download soltware
There is a fault in the link to the target computer

NOTE:

This will show a block of memory on the display, showing the hex and ascii. You may move the cursor up the screen and
alter the hex bytes, pressing enter on the line will then download it changing the bytes altered. The line will then be uploaded
again and reprinted. This is so if you were to alter ROM, it would not change when you pressed enter on the line.

_Thc PDS 6302 Manual 73

N - Send a command down to the dewnload software

N byte value |, byte value, byte value, byte value]

byte value
Is a value that is sent to the target computer

This command is included to allow you to expand the uses of the PDS monitor yourself. It will send this byte down to the
download software. The download sofiware protocols in PDS use, or will use the bytes in the range 170 - 200 to specily
certain functions, so try and avoid these unless you havérchanged the target computers download software. The current
version of the DL1 software only uses bytes in the range 179 to 187 to specify commands, although the others will be used
for future expansion. This command is very powerful, although you will have to write the software yourself, Basically, add
a say, 'CMP #5, BEQ MINE' to the main loop of the target computer download software, then in your MINE routine do
something clever. To initiate this clever routine from the monitor, just type N5. You could for instance have NO to frecze
the program when used with DL2, under the interrupts software, and N1 to restart the program again. Or you could have
N0 to exchange screens in a two screen game, Remember that multiple bytes can be sent, so that complicated commands
can be sent to the target computer. You will need to become familiar with the download-software to use this command
fully. '

4 L Ao VL aYlalitddl

0 - Set an offset for all addresses

There are two ways to use this command;
1] o)

This will show the current offset being added to all addresses

2l O offset

This will set the new offset to offset

All meinory addresses sent to and from the target computer will have this offser added to them first,

" For cxémpic, if I had a program loaded in the target computer at $8000 and it was supposed to be at $9000h, then if [
entered:

O $8000-$9000

- From then on it would be as if the program really was at $9000, for example D $5000 would disassemble the start of the
program,

The PS 6302 Manual _ 75

P - Work out screen coordinates or addresses

There are three ways to use this command:

1] _ P address

This will return the x and y coordinates of the screen address.
2] : Pxy
This will return the screen address of thex and y coordinat%:'s.

3] | P@ addreﬁs

This will set the start of the screen to address

NOTE:

These commands do not require a target computer connected, The computer must be setup in the config system or using
the ’Q’ command before this command is used. There are six different screen formats supported by this command;

0. ZX-SPECTRUM . - Hires screen at $4000, 256 by 192 pixels
1. COMMODORE 64 - Hires screen at 0, 300 by 200 pixels f
2. AMSTRAD MODE (0 - Hires screen at $C000, 160 by 200 pixels

3. AMSTRAD MODE 1 - Hires screen at $C000, 320 by 200 pixels

4. AMSTRAD MODE?2 - - Hires screen at $C000, 640 by 200 pixels

5.SPECIAL AMSTRAD - Mimic spectrum mode’ at $C000, 256 by 192

If you are using a second screen, or you have moved the screen from the defaults listed above, use the P@ address command
to specify the new start address.

When y.ou use the P address command, the coordinates return will be for the left most pixel in that byte.

EXAMPLES:

(All these assume that the current computer is 1, Commodore 64)

P00 ' Will print: Addr=2$0000, Bit=$80

P103,48 WIHN print: Addr=3§07EQ, Bit=01h

P%1234 Will print: X=176,Y =116

P$5143 Will print : That address is not on the screen!

You will notice how a commodore bitmap address range is from 0 to $3FFF, this address has to be added to the current
screen base address, before you will get the correct screen address.

ddl 1 LA VWL LFaddididd

Q | - Read or set options

This comméand can be used in two ways:

1] Q option

Will print tifw current value of the option.

2] Q option , value

Will set the'option to the value given.

NOTE:

This command does not require a target computer connected. All the options can also be found in the config system, see
the editor manual for more details. For a list of all the options and their parameters see the chapter on options.

:}EXAMPLE-S:

- The sequence of commands below will take a a screen address on the Spectrum and return the equivalent address on the
Amstrad screen.

QL0 - Select Spectrum as default computer
P$4567 - Find the coordinates of a screen address
Q11 _ - Select Amstrad as default computer
P56,29 - Find the screen address given coordinates

The sequencc of commands below will take an area of memory from the Spcctrum and transfer it to a Commodore 64.
The Spectrum is connected in port 1, the Commodorc 64 in port 2,

Q0,1 - Select port 1 (The Spectrum)
U=>DEMO,$4000,1000 - Upload 1000 bytes from $4000
- Q0,2 - Select port 2 (The Commodore 64)

U< DEMO,$C000 ... - Download the bytes to address $C000

Instead of entering values using the assembler expression evaluator, you may enter them in hex only, for example:

MS$A987 - Will modify memory address $A987
Q3,1 ; - Set "HEX expressions’
MAS87 _ - Now all numbers are treated as hex

The PDS 6502 Manual _ 77

R - Set or update the register values

The two formats for this command are:
13 R

This will update all the registers at the top of the screen

2] R register = value

This will set the register-to the value specified

register
Is any 6502 register, for example A, X, Y, or PC (16 bit).

R 4

This will given an error if:

The clever download software is not being used.

There is a fault in the link to the target computer.

The value is too big for the register specified.

NOTE:

You may sef more than one register at a time, for example:

R X=23,A=2,PC=$4000

The registers at the top of the screen are only updated after tracing has finished, or an R command has been executed. I
you wish to update them yourself, enter R on its own, PDS could not keep théem updated all the time because you may not
have a target computer connected, or it may not be running clever download software.

R i L S R R PR 78

S - Search memory for data

S start address , end address , data

start address
Is the first byte that will be scanned in the search

end address
[s the last byte that will be examined

data

Is the data the is being searched for

This will give an error if: .
The clever download software is not being used.
There is a fault in the link to the target computer,
The end address is lower than the start address.

NOTE:

The data may be any number of bytes, for example:

$0,100,23 o - Will search the first 100 bytes for 23’s
50,100,1,2,3 - Will search for the pattern 1,23
S0,100,"PDS" - Will search for the string "PDS’

PDS will search the memory by uploading the block and searching through it in the main computers memory. If it finds a
match then it will print the address of the first byte of the match. It will the carry on the search from the byte following this
address. :

The PDS 6502 Manual 79

T -Trace

This command takes twd formats:
1] : T

This start tracing from the current PC

2] : T address
This will start tracing from address

The PDS tracer is a symbolic tracer. This means that if a program had just been assembled, the tracer will use them while
it traces. To use symbolic tracing, ensure that the ’Q5’ option has been correctly setup (see chapter 6.3 and the ’Q’ command
in the monitor for more details).

This will give an error if:
The clever download software is not being used.
There is-a fault in the link to the target computer.

NOTE:

This is one of the most complex features in the whole of the development system. For {ull information see the chapter on
tracing, '

The PDS 6302 Manual 30

U - Upload/Download memory from/to the target computer.

This command has three different formats:

1] U start address , length [bytes per line]

This will upload an area of memory and place it at the current editor cursor position in the form of HEX statements, each
line will have 16 bytes, if bytes per fine is not specified, :

2] ' U >filename , start address length

This will upload an area of memory from the target computer inio a disk file called filename. Note the U

3] _ U < filename , start address | length

This will download a disk file into the target computer at the start address, if length is not specified then the whole file is

transferred. Note the U

This will give an error if: _

The clever download software is not being used.

There is a fault in the link to the target computer,

3] length is longer than the file on the disk.

3] filename does not exist.

1] Too much memory is uploaded, not enough space in the file,

NOTE:

The file name in versions 2] and 3] may contain drives and path names, In version 1] you may have 1 to 55 bytes per line in
the HEX statements.

EXAMPLES:
To upload the default screen from a Commodore 64 into a file in the current directory called SCREEN.C64 use:
U>SCREEN.C64,$400,1024

To download it again to the commodore screen use:

U<SCREEN.C64, 3400

The PDS 6502 Manual . ' 81

A% - Show nearest label

V expression

expression
This can be any number or normal expression.

Once entered, this will display the nearest label before, after and at that address. A message will be displayed if no match
was found, This is very useful when you are trying to trace or disassemble your code, as you can then reference addresses
with labels in your code. Make sure that you assemble your program before hand, as a symbol table is required if this
function is to work. :

EXAMPLE:
If BILL = $3E8, TOM = $514, and DICK = $11B4. Then entering the following command :
V2000

Will return:

TOM f$0514), 02BC bytes below that address
No labels at that address
DICK ($11B4), O09E4 bytes above that address

The PDS 6502 Manual _ Q2

W - Change or display a word at a memory location

This command can be used in two ways:
1] W address
This will display the word at the address given. The value wiil be displayed in hex, decimal, binary and ascii.

2] W address , value

This will move the value into the address given,
address

This is the address of the word to be changed
value

This is a value, from -32768 to 65535

This will give an error if;

There is a fault in the link to the other computer
1] Needs the clever PDS download software

2] Only needs the dumb download soltware

NOTES:

The B command has the same function, but works on bytes instead of words. This command is mainly used for altering
values in your program, to quickly see the effect of small changes.

EXAMPLES;

W$4000,23

This will load the location $4000 with the value 23, and location $4001 with 0
W FRED, {FRED}*2

This will double the word value at locations FRED and FRED +1

The PDS 6502 Manual 83

X - Evaluate an expression

X expression

expression ‘

Is a valid expression that will be evaluated using the assemblers expression evaluator. If you have just assembled something
then you may use label names.

NOTE: . N

This does not require a target computer attached.

The value of the expression will be printed in hex, decimal, binary and if within the range 32 to 127, in ascii.

EXAMPLE:

X23+45%2
HEX=0071 , DEC=00113 , BIN=00000000-01110001 , g

AHL L Lo UL ML AdllU Al

Z - Change the bank selected in the target computer

Z bank number

bank number is a value sent down to the target computer.

This wilt give an error if:
There is a fault in the link to the target computer

This command varies on all computers, in the download software you will find a small section you have to write yourself,
This is a section that gets the bank number 0-255 and sets up the computers memory depending on that value. If you wish
you could 'OUT" it straight to a "bank select’ port, on a spectrum 128 for instance. Or you could have a more complex
routine, with different setups for each value of BANK. This command has been written like this as all banked ram computers
are different and most programmers have different systems, or values for each different bank configuration.

The PDS 6502 Manual

6.3 The options and configure system in the monitor

The monitor can be changed or altered by a number of options, which can be set or examined either in the config system
from the editor, or by using the O command in the monitor. Below are all the Q options and what they can change.

.Option Range
0 lor2
1 Oto5
2 0,2-16
3 0-255
4 0-255
5
128 (7)
64 (6)
32(5)
16 (4)
8(3)
4(2)
2(1)
1(0)
6

128 (7)

Alters
Which PDS port the monitor works from, the default is
port 1.

Which computer PDS thinks it is attached to, this is only
really used in the P command so that PDS knows how the
screen is addressed.

This sets the radix of all the monitor commands, the
default is 10. If it was set to-2 then D1010 would
disassemble from location 10 (decimal) onwards. If this
is set to 0 then the commands only accept hex numbers,
No expressions are allowed, you could then use
commands such as DABCD or MC9.

This sets the number of lines displayed in the M
command. The default is 8. If it is set to 0 then memory
will displayed one screen at a time, and key will move
onto the next screen, the up arrow will move backwards
one screen. Escape or finish will quit this command.

This sets the number of lines displayed in the D
command. The default is 8. If it is set to 0 then code will
be disassembled one screen at a time, any key will go onto
the next screen. Finish or escape will quit this command,

Disassembler flags, each bit in this byte controls a
function in the disassembler.

1 = All expressions in decimal, else in Hex.

1 =Expressions in ascii if in range.

1="Tab after the instruction, else a space.

1 =1Initial address in decimal, else in Hex.

1=IX+nn and IY + nn always in decimal, else current
radix is used.

1=Labels will be printed at the beginning of the line
during disassembly or tracing.

1=Labels will be printed with the instruction being
disassembled or traced.

1=1If an exact label match is not found, then offsets to
that label will be displayed. The offset can vary from -2
to +2. .

Trace system flags. Each bit controls a function :
1=When executing in ’FAST’ mode, do a VSYNC after

k|

10 by 0202 anual

128 (7)
64 (6)
8 (3)
4(2)

2(1)
1(0)

36

each instruction, This makes the bar visible all the time
on the screen, although it slows the tracer down to 50
instructions a second.

General monitor commands flags

1=The E command accepts decimal input, else hex.
I=Analyze doesn’t stop when one bar reaches the end,
it will keep going until a key is pressed.

Sprite grabber flags

1=The cursor will move 8 pixels at a time in the Y
direction,

1=The cusor will be stored on the screen, otherwise it is
xor’d onto the screen,

Cursor type, high bit

Cursor type, low bit

00 - The default 8 by 1 pixel, single byte cursor is used,
01 - The four corner bytes of the sprite are used as the
Cursor.

10 - The top and bottom pixel line of the sprite is used as
the cursor.

11 - The cusor becomes an inverted block, the size of the
sprite '

The PDS 6502 Monitor _ 87

6.4 The trace system

You can start to trace a program by entering T address as a command in the monitor. If the PC displayed at the top of the -
screen is already pointing at the start of your program, you may press just T to start tracing.

You will need the clever download software in the target computer to trace successfully. When you enter the tracer you
will see 15 lines of source code disassembled along with their addresses and hex. There will be an inverted bar on the first
line of this disassembly, this shows the current instruction. At the bottom of the screen there is a small box, this is for
memory displays. Above this there are all the options, with their first letters highlighted.

Y

When PDS traces a program it does not really execute the code, if it did then when it executed a jump for instance it would
exit the PDS download software and run your program at full speed. It manages to trace programs by half running them
and half emulating them. When PDS comes acrass say, JMP $1234 it would just load PC with $1234, For more complex
instructions such as ADC #2 it downloads the instruction along with a couple of padding NOPS into a three byte buffer
in the clever download software. It restores all the registers, executes the instruction, saves all the registers, sends them
back up to the main computer and then carries on with the next instruction. It has to do this with most instructions it
executes to get the fags altered correctly. Even doing all this work, on an IBM PC it can-execnte about one thousand
instructions a second.

If PDS comes across an unknown instruction, it will place the inverted bar on top of it and beep, it will not continue until
the value of the PC is altered to either another part of your program, or just past that instruction. You could put illegal
instructions around your program to halt the tracer, $FD for instance.

The tracer can use the sybols from your program, while it is tracing, To do this, ensure that your program had just been
assembled, and the option ’Q5' is setup accordingly (sce chapter 6.3).

Note that the programs you trace should not access the ports uscd by the PDS interface, this will almost certainly stop the
tracer, and probably crash the target computer. You should also notice that while the ciever download software is used,
the interrupts are always disabled. The tracer will show when interrupls are enabled or disabled, although they never really
alter. If you tracea HALT, it will be treated just like a NOP by the tracer (unless the interrupts are disabled). I the interrupt
routine is important (say reading keyboards) then call them now and again [rom the tracer.

The PDS 6502 Manual 83

6.5 The tracer options

There are 11 different options you may choose in the tracer main menu they are :

Any Key

Will execute the next instruction and show and registers changed.

G - 'Go full speed’
Will execute a jump into your program at the current PC. This will leave the download software and run your program full
speed.

F ' - 'Fast trace’
This will execute code fast, as if you kept a key held down. It will stop when you press any key.

: - "Quick trace’
This will execute code quickly, it will only update the PC inthe register display, it will not disassemble the current instruction
on the screen and will not update any other register values. This speeds up the tracer a lot and is used to keep an eye on
where it is without slowing it down too much. It will stop when you press any key. :

S _ - 'Stack display’

- This will open or close a box on the right hand side of the disassembly, This box shows the contents of the last ten items
pushed on the stack. When a PHA is executed you will see the value of A and the letter A on the bottom of the stack. If
you execute a JSR, then '$L and "$H’ are displayed at the relavent stack position. This is so you can see if the correct
registers are being pulled off the stack in order. To turn this stack off, press S again.

R - ’Register values’
Allows you to change register values, it will prompt you for the register and value in the form reg = value. value canbe any
expression as long as it is within range. <reg> can be any eight or sixteen bit register.

M . - 'Memory display’
This will allow you to see a block of 32 bytes in hex and ascii, the block can be at a fixed address, or pointed ta by a register,
To switch off the memory display, select M again. The memory display is updated after every instruction.

L _ - ’Execution limits’
Allows you to specify a range of addresses that can be traced, if the program goes out of these limits then it will stop and
beep. The upper and lower limits are default set to 0 and $FFFF.)

N . ‘ - ’Execute the next instruction’

The tracer will execute the next instruction at full speed. This is mainly used for executing routines at full speed. Say the
tracer was about to execute JSR CLS, you don’t really want to trace this routine so just press N. If the routine is very long
and takes over a second to execute then the tracer may think the target computer has hung. If this occurs you will just have
to wait until the routine has finished and the enter T for trace continue.

1 : - 'Ignore this instruction’
This will make the tracer skip over the current instruction, It is mainly used for skipping out of loops, or avoiding calling
routines.

T - "Trace very quickly until condition’ :
Will trace as fast as it can, with no display updating, until a condition is met, Once T is pressed, a second menu is displayed
containing the conditions.

Key - 'K’
Will trace until any key is pressed. This is the fastest trace available.

Break - 'B’
Will trace until a BRK is executed (many programs use this for message or error
trap routines).

The PDS 6502 Manual 89

Return - 'R’
Will trace until an RTS is executed.

Stack - 'S’
Will trace until the stack is altered in any way.

Fail - ’'F
Will trace until a conditional instruction fails, or does not jump.

Pass- P

Will trace until a certain point is passed a certain number of times. This can be
used as a breakpoint. It can also, dxsplay the number of times the point has been
passed as a countdown.

Compare - 'C’
Will trace until a register or memory address elther goes outside set limits or until
a particular bit pattern occurs.

