PRINT—0UT

Issue Three Price 70p

L 11 | |]]

BY Thomas Defoe, Nark CGearing and Jonathan Haddock

Contributor

. Timly Moo
P 00 fayior

Including:~ BASIC & [M/C tutorials
LINECHECHER—program

Homebrew Software

Technical Tips

INDEX

INFORMATION

[INIDIEX

Miscellaneous

Page 3 -
Page 40 -
Page 41 -

FDITORIAL — A warm welcome !
OFFERS — Things to buy for your CPC

SMALL ADS — Readers’' goods on sale

Jeatures

Page 4 -
Page 20 -~

TECHNICAL TIP3 —~ Solutions to readers' queries

LETTERS — Your thoughts on the CPC

R ehietns

Page 15 -
Page 30 -~

HOMEBREW SOFTWARE — Adventures and simulations
GAMES SOFITWARE — The good and the bad

ﬁrugrammmg

L

Fage
Page
Page
Page
Page
Page 28 -~
Page 33 -
Page 37 -

O 0

N =
W @
|

BESINNER'S BASIC — Part 3 of this tutorial
IMPROVIMENTS — Modifications to a past program
LINECHECKER — Eliminate those typing ervors
BITS AND PIECES —~ More useful snippets

MAZE — A perplexing game to type and play
BASIC DEPROTECTION — Break into BASIC

MACHINE CODE — Calculating in M/C

ADVANCED BASIC ~ Grasping BASIC commands

We would like to express owr tharks to Mr Gearing and Black Horse
Agencies, Januarys, for the continued use of their photocopier in

the production of this issue.

Please note that we do not support piracy in any form whatsoever
unless backups are for the sole use of the original owner.

Sponsored by

723 BLACK HORSE AGENCIES
ol Januarys

EDITORIAL INFORMATION

Eoitorial —

WELCOME TO ISSUE THREE OF PRINT-CQUT.

First of all we would like to apologize for
the delay in producing this issue of the maga—
zine. We hope that this has not been too much
of an inconveniance for you and that you enjoy
reading this issue.

We hope to have completed Issue Four by the end
of March. If you would like to order copies in
advance, you may do so by sending either :—

a) 70p + A4 SAE (with a 28p stamp)

b) £1.10 (which includes postage and packing)

We are very pleased to welcome Mr Bob Taylor
as a contributor to the magazine and he will be
helping with the programming and technical side
of things.

If anybody else would like to contribute or
help out with the magazine., would they please
write to us at the normal address (shown below)
and state what sort of things they would like
to submit for publication.

If you have any question concerning the CFC,
please feel free to drop us a iine and we'll do
ouwr best to come up with a solution. We try to
answer all letters that we receive. but please
don't expect an immediate answer.

The address to write to 13 :—
FRINT-OUT,

8 Maze Green Koad.
Bishop's Storttford.
Hertfordshire
CMz3 2PJ.

MAXAM RESULI'=RIT

TECHNICAL TIPS ADVICE
TECHNICAL TIPS

We have received several letters asking for help concerning various types of
tape/disc files. As we feel that these queries needed a fuller answer than
could be given in the limited space of the letters page we have decided that a
complete explanation to these, and any other large technical problems. will be
answered in 'Technical Tips'. The first problem concerns MERGE ard comes from
MRS JO WOOD. who owns a CPC 464, 64K memory expansion and DD-1 disc drive.

DISC MERGING ON THE 464

I can't get programs to MERGE into memcry. I1've made sure there's no problem
over line numbers etc. All that happens 1s every time I try to merge two progr—
ams it comes up with EOF met and when I ask the computer to print the value of
EQOF it comes up as —1. I don't really understand the explanation in the comput—
er manual to be honest - '"attempt has been made to read past end of file on
cassette input stream” - I'm using the disc drive all this time. How can you
stop it reading past the end of the file?

I suspect that you have discovered a bug in the Operating System software
which resides in the 464's ROM. but there are a couple of solutions :—

1. Any program vou wish to MERGE into another in memory should be saved before—
harnd as an ASCII file by using :— SAVE '"filename>".A

Saving in this way takes quite a bit longer but MERGE handles 1t OK.

2. A more expensive solution is to change vour 464 into a ©128 by having a 6128
ROM fitted permanently into yvour computer, or by building a Romchanger similar
to the project in the March 1989 issue of 'Amstrad Computer User' or you could
buy a ROM board which allows the insertion of a 6128 ROM. The improvement is
not astronomical but the 6128 is a lot more ‘User—Iriendly' than the 464.

What 1s going wrong is as follows :—

Fach lcocation (or address) of memory can hold a value between 9 and 235. This
value is called a byte. When a program is saved, the bytes which make up the
program are taken in seguence from the memory and sent to the tape recorder or
disc drive to bhe stored on the magnetic medium there. When loading, these same
bytes are taken from the magnetic medium and re-stored in memory (at the same
locations if it's a BASIC program being loaded). The loading process i1s not
concerned with the values of the bytes.

When MERGEing. these same bytes are not put immediately into their final
destinations. As the computer has to decide where to place each line of the
program (among other things) it has to know where each line begins and ends and
s0 looks at every byte to gather this information. In doing so. 1t detects any
byte with the value of 26 (&1A) and because a byte of this value indicates the
end of an ASCII file, it assumes 1t has reached the end of the program. However
1t knows from other information that 1t 15 not really the end and so prints the
error message.

TECHNICAL TIPS ADVICE

In the 6128 the fault does not occur and so I asssume that someone must have
encountered the problem in the 464 ROM and written an extra check for the 6128.
A BASIC program which i1s saved as an ASCII file is just a sequence of numbers
and letters, none of which has a value of &1A. So it will have only one byte of
&1A ard that will be where it is supposed to be — at the end. On the other hand
a BASIC program when saved normally, has almost everything converted into byte
values (called TOKENS) to save room. Although only one of these tokens has the
value of &1A, numbers are also converted (it is not just 26, but 282, 538, etc.
or any other number made up of 26 and a multiple of 256) which are common and
will cause the error. Sometimes with a short BASIC program there may be no
bytes of &1A and in such cases. the MERGE will be error free. However. longer
programs are almost certain to have some bytes with a value of &1A.

FILE TYPES

The next problem comes from Mr J. Hazeldine who asks :—

How does cne run or list a program that vou can hear loading vet will not
RUN. Something must have gone into the memcry because you can hear it loading.
surely there must be some way of LISTing it so that it can be examined and
perhaps rectified.

here 15 no definite answer to this as there are many reasons why a program
may not allow you to list it. Berfore a possible solution can be suggested. vou
need to know what type of file you are trying to load. The simplest way of
doing this 1s to CAT the tape. Following the filename will be a block number &
then a symbol which signifies what sort of file it is. The common file types
are shown below :—

$ — normal BASIC file

% — protected BASIC file
* - ASCII text file

& - binary file

If it is a normal BASIC file you should be able to load and list it quite norm—
ally unless it has some special form of protection on it. However, in crder to
load and list a protected BASIC file vou need to use a deprotector such as that
given in this issue in Deprotection . An ASCII file is usually used by a word—
processor and needs to be loaded into one to view easily (or the file might be
used for the MERGEIng process). If the binary file is 8 blocks long it is prob—
ably a screen file and can be seen by uging the command :— LOAD "<filel" &CQ00
If it 1s not this long it is probably a machine code program and, once loaded,
you will need a monitor/dissassembler to view and change it. There are other
files which have special symbols but the above are the most usual.

BEGINNER'S BASIC BASIC TUTORIAL

Loops := GOTO & FOR..... NEXT

BEGINNER'S BASIC

In Issue Two we developed a program that would print an introduction message
and get two numbers whose average the program would calculate and print. Below,
is that program as a reminder.

10 CLS

20 INPUT "What is your name';names$

30 PRINT "Hello ";names$;

40 PRINT " I am youwr Amstrad and"

3@ PRINT "I am going to calculate averages"
6@ INPUT "Enter rnumber 1 ,umberl

7@ INPUT "Enter number 2 ', number2

80 answer=(number 1+number2) /2

F@ PRINT "The average of';numberl;

100 PRINT "and";rumberZ;'"is";answer

As it stands. this program is fine for printing out averages but there are
times when you will want to calculate more than one pair of averages. Using the
program above, the only way to do this is to constantly re-RUN it. However, if
we could make the program run over and over again this would allow us to calcu—
late any number of averages quickly. To do this add the following line :—

11© OT0 &0

This line incorporates a new command, GOTO. The number following GOTO tells
the computer what line it should go to next. Thus the order of execution of the
line numbers in the above program is as follows :—

10,20,30,49,50,60,70,80,90,100,110,60,70,80,90, 100, 11@,60,70,etc.

Therefore. the command GOTO creates an infinite lcop. The only way to break
out of the above program is by pressing the [ESC] key twice — this ESCapes from
the program.

GOTO is probably the most common looping instruction and also the most mis—
used. As GOTO forms an infinite loop it is rarely used in proper programs for
the purpose of looping — an important rule is that if you find yourself having
to break out of a GOTO loop you should probably have used another type of loop.

The above works perfectly, but if you wanted the program to calculate ten
averages only and then stop, you should not use a GUTO loop but a FOR..... NEXT
loop. This command is slightly harder to understand than GOTO but is a lot less
limited in its uses and abilities. On the next page are the lines that need to
be modified for the program to calculate ten averages and then stop.

BEGINNER'S BASIC BASIC TUTCRIAL

55 FOR i=1 TO 10

110 NEXT 1
Line 55 requires a bit of explanation — a FOR..... NEXT loop always takes the
form of, FOR variable=numberl TO numberz NEXT variable. The variable can

be anything that yvou want and is used to identify which loop the NEXT command
is referring to (it may help to think of it as the 'name' of the loop). The two
numbers following the FOR instruction specify what value is to be given to the
variable at the beginning and alsoc what the last value is meant to be. To help
explain this, type NEW and then enter the short program below :—

1@ FOR i=10 to 20
20 PRINT 1
30 NeXT i

What this program will do is, print all the numbers from 10 to 20. In line
19 the program is told that i must be between 10 and 2¢ and that it will start
with a value of 10 ard finish with a value of 2@. Line 20 then prints the value
of 'i'. Line 38 checks to see whether 'i' has reached 20 if so it ends the pro-
gram but 1f not it adds 1 to the value of '1' and sends it back to line 18. No
doubt some people will be wondering if i1t is possible to make numbers increase
in jumps larger than 1 — the answer is ves. Change line 10 to read :-—

19 FOR i=1® TO 20 STEP 2

Now. every time line 30 is executed, it will check to see if
and if not it will increase '1' by 2 and then go back to line 18@. The STEP part
of the command is optional but if it 1s omitted it is assumed that the variable
will be INCREASED by 1 each time a NEXT command is encountered. If we want the
numbers to be printed in descending order that is easy. Change line 16 to :—

1' equals 2@

10 FOR i=2¢0 70O 1@ STEP -2
The step command now tells the computer to DECREASE '1' by 2 every time that
a NEXT command is executed. If you have two loops set up at the same time, the
computer will be able to distinguish between them as lorg as they do not have
the same variable name. Tye NEW. and enter the following program :—

10 FOR i=1 to 10
20 FOR j=1 to 10
3@ PRINT j;

40 NEXT 3

S0 PRINT

6@ NEXT i

BEGINNER'S BASIC BASIC TUTORIAL

This program will print 18 rows of the numbers from one to ten with a clear
line between each of them. The order of execution is quite complicated and due
to lack of space cannot be printed here in full. However, if you wish to see
the order of execution, type TRON (this stands for TRace ON). Now every time a
line is executed, the line number is printed up on the screen. Some of these
numbers may appear very quickly and you might like to pause the program by
pressing [ESC] once — when you wish the program to resume, press any key. When
you want to switch TRON off simply type TROFF (TRace COFF) and everything will
be back to normal. TRON is very useful for finding out where mistakes or bugs
are occuring in the program.

FOR NEXT and GOTO are very powerful commands on their own (as are the
many other types of loops) but so far we have not seen the computer make any
decisions on its own. For instance, a programmer might require the computer to
ask for a code number and if it is correct, to allow the program to continue,
but if it is wrong to halt the program. There is cne main command on the CPC,
in BASIC. that is used for decision making and that is the IF....THEN....ELSE
command. This is a very complicated structure (it needs to be !!!) and we will
be looking at it in great detail in next issue's BEGINNER'S BASIC.

IMPROVEMENTS NAME AND ADDRESS

IMPROVEMENTS

Frank Ellis of Botley has sent in the following suggestions for the improve—
ment of 'Name and Address Storer' that appeared in Issue Two of Print-Out. The
alterations allow you to do two new things. and they are :—

1. To enter telephone numbers in the form of 81 234 5678

2. To enter names in the form of BLOGGS, J.

To make these changes, simply alter the following lines :—

(&) Replace all occurences of phone(i) by phone$(i) in lines 340,440,590,7799,
920,1040,1170,1410,1570,1740 and 2110

(b) Replace all occurences of find by fing$ in lines 1550 and 1570

{(c) Replace all occurences of pold by pold$ in line 2110

(d) Replace all occurences of INPUT by LINE INPUT in lines 430,460,690,970,
1499, 1600, 1700 and 1780

(e) Charnge line 870 to read :—

870 LLOCATE 20, 14:L.INE INPUT "Enter correct name :— ",name$(i)

LINECHECKER - TYPING AID PROGRAM

/

Linecheclker .

A PROGRAM TYPING AID e
for use with PRINT-OUT \Jl

by BOB TAYLOR

Ever typed in a program and found that it stopped with a new error each time
you tried to RUN it. We all know the feeling I'm sure. Well we at FRINT-CQUT
think we've got the answer for you. It is an R5X called LINECHEK which you can
load in at any time -~ even after you've started typing, so you don't have to
SAVE what you've already done while you install it.

There have heen several Line Checkers in the national magazines over the
vears. Each gives a checksum accumulated from the characters present in a line,
but the method of calculating this sum differs from magazine to magazine.
Evidently it's no good just adding up the value of each character as this would
give the same result even if the letters were in the wrong order — something
more sophisticated is needed.

The first checker I came across was 'Get it Right' in the June 1987 issue of
‘Computing with the Amstrad', as it was known then. Together with a revised
version in 'CPC Computing' (as CwthA became) in September 1988, this produced a
5 digit number checksum using a failrly complex XORing routine but the big bug—
bear was that you had to list the program to get the checksums -~ there was no
way to get a result as you went along.

The most recent appearance was 'Type—writer' in 'Amstrad Action', June 1989.
The checksum with this checker appears when you type in the ENTER at the end of
each line and consists of a fouwr letter code resulting from multiplying the
checksum so far by the value of the current character. However the format used
to present the result uses unusual letter combinations and these appear almost
foreign compared to decimal or hexadecimal, as well as being difficult to read
on my usual MODE 2 screen. Between these two came 'Proofreader' in 'Amstrad
Computer User' also in Sept 1988 (with it's improved version appearing in Jan
1989.) As with the 'Amstrad Action' one, the checksum appears with the ENIER
but it's a 2 digit hexadecimal result derived from adding in the value of each
character multiplied by 1ts position in the line, any overflow being discarded.

The important factors which make for better checking are the algorithm of
the summing routine and the active size of the checksum. For these reasons. of
the three listed above, the CwtA one is probably the best for eliminating
coincidences (i.e. where the checksum gives the result which matches that

LINECHECKER PROGRAM

published by the magazine without there being many chances of an error still
being present.) However I always fourd its method of use a big drawback and 5
digits were a bit of a mouthful too. With the demise of CwtA, this checker 1is
now no longer used with any programs.

The next best is the 'AA' method but it falls down by making the case of
letters significant so that capitals and lower case must be typed in exactly as
printed. Although 'Proofreader' checksums are only 2 bytes long and its method
is slightly inferior to the others, it is a lot more 'user—friendly' in that
you can type in upper or lower case & it gives the same result; and 1t ignores
accidental double spaces (which wouldn't affect the syntax of the line).

Now I could of course have written one completely from scratch which would
have none of the problems present in those already produced: however I'm a
great believer in standardisation and would prefer to see every magazine using
the same one (hopefully mine) so I don't want to introduce more proliferation.
To this end I decided to utilise 'Proofreader' for PRINT-OUT's use, with some
improvements. The improvements take two forms: those which increase its user—
friendliness and those which increase its discrimination. Because the latter
result in a changed checksum which by definition means less standardisation. I
have arranged the RSX to have three versions in one: a first which is almost
identical in operation to the cwrent 'Proofreader'; a second which mimics
'Proofreader’ for lazy typists like myself; and the full blown version to be
used with all future FRINT-OUT programs to help you 'get it right'. In this way
it can still be used with previcus ACU programs and hopefully ACU might adopt
it for all their printed programs.

During the development of the routine, a major difference was discovered
between the way the 464 operates the AUTO mode of program line entry and the
way the 6128 does it. It had heen hoped to only print checksums for lines being
entered into a program whether with or without AUTO, and not with direct
commands. The method employed to acheive this was to lock for the line number
in the BASIC Input Area (at &ACA4 in the 464 and at &ACBA in the 6128) and only
to print values if it was present. Unfortunately the 464 does not have the line
number copied there during AUTO (6128 owners will probably not be aware that
their 464 counterparts are unable to alter the line number provided by AUTO).
This gives rise to two problems. Firstly there is no number present to initiate
the production of the checksum. Secondly, with no number, there are characters
{(digits) missing from the line, so any value produced from the rest of the line
would be incorrect. In order to accommodate these differences, I had to write
extra code for the 464 to enable AUTO to he used; it reconstitutes the
appropriate line number from AUTO's Line Number system variable at &ACID/E and
adds in these digits to produce an accurate checksum.

I had intended to use the AUTO On flag at &ACIC to produce a checksum durirgg
use of AUTO, and not afterwards when issuing direct commands. It seems that

10

LINECHECKER PROGRAM

while in AUTO this flag is tuwrned off temporarily during line entry and so
can't be used. Instead, I decided to make the routine check the Line Number
system variable: if anything other than @ is present, then AUTO mode 1s assumed
arnd @ line number added into the checksum. In order to guarantee a line number
of @. any use of the R3X will reset that system variable. It will then stay as
0 until AUTO is invoked. After using AUTO. the last line number reached will
still be present there. so checksums will then continue to be produced for any
input unless the RSX (with or without parameters) is again used. The further
problem with the 464's AUTQ which only displays an asterisk when a previous
line is present, cannot he accomodated and such lines will give wrong checksums
while in this form; LISTing such lines produces the right values however.

All this unfortunate bodgery applies only to 464s; 6128 owners will only get

checksums with program line entries — normal or AUTO.

The lcader for LINECHEK, as we've called our checker. is given in the
program listing. If you are typing it in then ignore the digits enclosed by
squared brackets at the beginning of each line and remember to SAVE it before
rumning it in case you have made any typing errors (the last ones to get
through we hope). When RUN. it will prompt vou to press 'S' in order to SAVE
the Machine Ccde program — make sure you have a cassette or disc installed
before doing so. You can then carry out yvour first check with LINECHEK.

You will have noticed that with the BASIC listing of LINECHEK the checksum
is printed in squared brackets at the start of each program line. As mentioned
earlier, this should not be typed in. The checksum will be given at the start
of the line so that it is easier to check against and also to remind vou not to
type it in. However when you press ENTER at the end of a line. the checksum
will appsar after the line you have just typed in. All vou have to do is check
that this result i1s the same as FRINT-OUT's checksum printed at the beginning
of that line: if not then vou can EDIT the faulty line and correct the error.
Of course, until you have LINECHEK installed yvou can't use it, so the checksums
given won't be usable while you are typing it in.

To use LINECHEK now or in the future, just load the cassette or disc with
the correct M/C program on and enter the following line in Direct Command Mode
(1.e. without a line number):

MEMORY HIMEM~&238:a=HIMEM+1:{_.0AD"linchk.bin",a:CALL a

To switch on the RSX just enter:

TLINECHEK, 2 (or 1 or 0 depending on which version you want to use)
To switch it off:

TLINECHEK (withcut any comma or number)

11

LINECHECKER FROGRAM

The three versions are:

LINECHEK,® This is the plain version for use with ACU programs. It does every
thing that 'Proofreader’' does with the added advantage that you don't
have to type in a space after the line number.

LINECHEK,1 This is the lazy man's ACU version; it performs the same as
‘LINECHEK, ® but with the following improvements:

a) It allows you to use 7 instead of PRINT and inserts a following space
1f one 1s needed

b) It inserts a space between a decimal number and & Command 1f one is
omitted - e.g IF a=10G0TO 1@@ becomes IF a=10 GOTO 100

¢) It adds in (but doesn't insert) a space before & (used for Hex numbers)
and before hash (used with sireams) i1f either follows a Command without
one — e.g CALL&AOQY® 1s counted as CALL &Aoo and PRINT#1 as PRINT #1

d) It adds in (but again doesn't insert) a " 1f vou've left one off the
end of a line

JLINECHEK,2 This is the version used for checking all future programs printed
in PRINT-QUT. It behaves like LINECHEK,1 hut discriminates better. The
other versions convert all letters to lower case no matter where they
are. and also ignore multiple spaces counting them as one. This version
preserves the case of letters within strings enclosed by quotes as well
as the number and position of spaces therein. There is a weakness in
'Proofreader' which means that i1t could not distinguish between upper &
lower case letters 1n some positions in a line even if 1t was altered
so as not to convert everything to lower case:; this problem has been
eliminated in this version. A further flaw in 'Proofreader’ is that it
mistakes a single inverted comma inside a string as a short REM. This
too has been corrected for the PRINT-OUT version. As a result of these
alterations, the checksums produced will differ from the other versions
vhenever strings are present in a line.

Note that all versions ignore everything that follows a ' (short REM,) but that

everything after a FEM is counted.

With the 6128 only, one way to use LINECHEK is to enter:
AUTO <first lire>, S (1.e. halve the required spacing between lines)

Type in the line intended after the line number ending in ¥ and if the checksum
is correct when you press ENTER then just use ENTER again when the line number
endirgy in 9 appears — this line won't e included in the program (nor will any
checksums for any lines). However if the result i1s wrong then change the 5 of
the line number which has just appeared. to a ¥ and copy from the line above
correcting as you go.

Because line numbers can't be altered on the 464 during AUTO, yvou won't be
able to use this method. If vou find any incorrect resulis, you will either
have to break cut of AUTC straight away to correct a line with an incorrect

12

LINECHECKER PROGRAM

checksum, or wait until you've entered a chunk of program before EDITing the
offending lines. When yvou LIST a program the checksum will also appear as each
line is printed and this also applies to a listing printed on a printer. You
don't have to POKE or alter anything to obtain printed checksums — it is done
automatically within LINECHEK.

You could RUN any program with LINECHEK twned on, but 1f that program
requires you to INPUT any numbers, (or INPUT anything on the 464) then each
such entry will generate a checksum. To remove this possibility just tun it
off with: ILINECHEK without any parameters - it doesn't matter which
version you have been using.

'LINECHEK,1 is intended to be used with 'Amstrad Computer User' programs
although unless there is a change of policy, only ‘18 Liners' are at present
printed with checksums.

There might be a few times when ACU program writers don't leave a space
between commands and & or hash. At these times LINECHEK,Q should be used to
obtain matching results, but in general (LINECHEK.1 should suffice for most ACU
‘Proofreader' checked programs.

The RSX is quite flexible:; if you forget which version is in use it i1s OK to
issue a ILINECHEK,<version> again, and yvou can change from cne version to
another at any time without twning i1t off in between.

The final proof of the pudding is in the eating, so check LINECHEK.Z by
LISTing the BASIC program and confirming that you obtain the same checksums as
are printed in the listing with this article.

[F1]1 19 "LINECHEK-LOADER by R Tavlor for PRINT-0OUT (Fublic Domain 1989)

C1E] 20 MEMORY HIMEM-&238:RESTORE 110:PRINT:PRINT"FPlease wait a few seconds"

[49] 30 FOR lin=0 TO &238/8-1:total=0:FOR n=1 TO 8:READ as%$

[543 40 byte=VAL ("&'"+a%) :POKE HIMEM+1ink8+n,byte

£4B]1 50 total=total+byte:NEXT n

[21] 6@ READ a%:IF VAL ("&"+as)<>total THEN PRINT:PRINT"Errcar in line"linx1@+110
END

L1473 7@ NEXT lin:IF PEEK(6)=80 THEN POKE HIMEM+CB,&A4:POKE HIMEM+&D4,&99: POKE
HIMEM+&DB, &25: POKE HIMEM+&E7 ,&21

{391 80 PRINT:PRINT"A1l M/C loaded":PRINT:PRINT"Press ’S” to save M/C as
LINCHK.BIN" sWHILE INKEY$="":WEND: IF INKEY (&2 <>~-1 THEN a=HIMEM+1:5AVE
"LINCHK.BIN",B,a,&238

(BAJ 90 PRINT:PRINT"To Load and Initialise LINECHEK RS8X with a program present
Just Enter: " PRINT"MEMORY HIMEM-&238:a=HIMZM+1:LOAD"CHRS (34)
"LINCHKOBINYCHRS (G4 ' a3:CALL a":PRINT"in Direct Command Mode with the
Disc or Tape inserted at the correct place"

(EA] 100 END

13

43
F43
21
F&1
173
6C1
1A]
363
8D1
7B1
16]
9591
41
FA]

110
120
130
140
150
160
176

621 23¢

301 2

83
763
83

8E3 .

7C1
1F3
681
F33
F31
@1]
DF1
163
/81
CC3
F11
133
CF1
71
433
HAT
7C1
371

A3

701
28]
a7
Be]
4A1
7E1]
7913
~@]

400
41¢
429
430
449
450

460

(Bﬂ Ul
DO U
[SEFSE IO

&
~
[

380

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DaTA
DATA

) DATA

DATA
DATA
batTA
DaTA
DATA
DATA
DATA
DATA
DATA
DATA
DatTA
DATA
DAaTA
DATA

v DATA

DATA
DATA

) DATA

DATA
bAatTA
BAaTA
DATA
DATA

LINECHECKER

DS, 62,6B,01,2F,02,09,EB,
01,19,00,09,72,28,73, 44,
4D,E1,36,09,23,C3,D1,BC,
2F,92,B7,20,12,3A,30,00,
FE,CF,20,42,2A,35,00,22,
2C, BD, 2A, 33,00, 18, 2E, 78,
32,37,00,3A,5A, BB, FE, CF,
20,2C,2A,2C, BD, 22,35, 00,
2A,58, B8, 22,33,00,32,30,
o»,F3,CD,0oF ,00,3B,3B,E1,
FB,01,60,00,09,22,2C, 5D,
0E,06,09,3E,C3,32,5A, BB,
22,58, BB, 32,28, BD,C9, 00,
©0,22,1D,6C,C9,20, 1D,AC,
7C,B5,28,67,11,F6,FF, DS,
1€,9C,05, 11, 18,FC,DS, 11,
Fo,D8,D5,AF,D1,3D,3C, 19,
38,FC,ED,S2,B7,28, 10,F6,
30,D5,0C,51,5F, 78,83, 15,
20,FC,47,78,E6,30,D1,CB,
4B,28,E1,7D,F6,30,2E,37,
11,A3,AC, 18,2B,E5,24, 35,
00, 18,04,E5,2A,33,00,22,
31,00,F5,FE,0D,20,41,21,
37,00,7E,E6,03,F6,10,77,
DS,11,8A,AC,CS, 44,4C, 1A,
FE, 30,38, 20,FE,3A,30,26,
05, 18,63,18,21,3E,20,F7,
F7, 3, 58,E7,06,02,F1,4F,
OF , OF , OF ,OF ,Eb, OF ,C6, 90,
27,CE,40,27,F7,79,10,F4,
3E,sD,F7,3E,12,F7,C1,D1,
F1,E1,03,30,00,18,06,CB,
SE,CB, DE, 20, 04,08, 71, 20,

2n,CB,71,3E,70,28,26,89,

3E,72,28,21,B9,3E,69,28,
1C, B9, 3E,6E,28,17,89, 36,

74,29,12,CB,9E, 13, 1A,FE,

2E,38,19,FE, 3A,38, 04, FE,
41,38,19,3E,20,1B,Fb, 20,
£3,20,45,4F,7C,81,10,FD,
67 ,E3,13,1A,FE, 34,30, 06,
FE,30,30,EC,CB, B6,CB, 66,
28,06,CB,A6,FE, 20,20, DB,
B7.20,0A,08, 7€, 28, 0L, 3E,
22,CB,BE, 18,00, 34, 35, 20,
26,FE,27,20,17,79,FE, 20,
28,88, 18,BF, 18,89,08, 4€,

270
265
31B
Z2AR7
498
394
4AF
438
201
499
35C
2E7
180
z2B3
31iB
26B
31E
2CE
SCF
287
3De
46B
47E
387

2ES
4FC
3B8
29E
31C
319
344

LAG]
{361
[543
(DC3
L6CT
LbD1
(03]
{711
L7713
[D21
[F33
[621
LCF1
R3]
fE1d
[AA]
[223
[7B1
LAD]
D73
(BC1
{FE]
[A3]

PROGRAM

590 DATA 28,EF,E3,2C,7D,E6,07,1A, 3PA
600 DATA 20,B8,18,B5,FE,20,20,0E, 391
610 DATA B9,20,AB,18,B5,18,A4,FE, 40B
620 DATA 22,20,0C,CB,7€,CB,BE,20, 340
&30 DATA 9F,CB.FE,CB,B6, 18,99,CB, 565
449 DATA 7E,20,D3,FE,27,28,C6,FE, 482
650 DATA 36,20,06,CB,0E,18,EC,18, 2FS
650 DATA 85,06,61,FE,26,20,15,CB, 310
670 DATA F&,79,F6,20,B8,38,0R,FE, 47D
&80 DATA 7B,30,06,08,6E,28,C06,C8, 3A3
650 DATA Bo,1A,18,88,CB,6E,20,08, 301
700 DATA FE,3F,28,A0,FE,23,28,E1, 42F
710 DATA 1A,F6,20,88,38,04,FE,67, 389

20 DATA 38,04,CB,B6,38,E3,FE, 78, 451

30 DATA 30,05,7E,E6,60,20,D0,79, 42C
740 DATA FE,30,38,D5,FE,3A,38,95, 440
750 DATA FE,74,20,CD, 1A,F6,20,B83, 447
760 DATA 20,C7,0S.13,1A,F6,20,B8, 3B7
770 DATA 30,14, 1B, 1B, 1B, 1A,F6,20, 1CB
750 DATA BS,20.11,1B,1A,F6,20,FE, 332
799 DATA &4,20,09,1B, 1A.F6,20,B8, 290
800 DATA 30,02,0B,EE,DI, 18,A2,4C, 3C2
810 DATA 49,4F,45,43,48,45,C8,00, 277

Limecheckear

A PROGRAM TYPING AID
for use with PRINT-OUT

All future programs in Print—
Out will have Linechecker codes
except those that are included
as part of tutorials.

With major programs, the 'Line—
checker' symbol will be printed
together with a paragraph which
will be a reminder as to how to

use 1t best.

14

HOMEBREW - SHAREWATCHER IT REVIEY

HOMEBREW
SOFTYARE

SHAREWATCHER II - BY MATTHEW PINDER, MIP SOFTWARE.

In our last issue another title from MiP software, Maths Master Plus. was
reviewed and was highly recommended. At the end of the article it was mentioned
that Sharewatcher, a stockmarket simulation, was on sale and that an upgraded
program would be available soon.

Earlier this month, Sharewatcher II was released and it costs £4.50 (tape)
or £7.50 (disc). Sharewatcher II is the updated version of Sharewatcher and it
also features an additional printer routine.

The aim of the game is to make as much money as possible by purchasing
shares of companies. preferably at a low price, and then selling them at a much
higher price. However, the game doesn't just stop there. The game also gives
the player updates on the shares of all 18 companies that can be traded. There
15 also an accounts screen which contains information about the time left, cap—
ital in shares. ready capital. total wealth and the FT-100 share index. You can
also inspect vour prospective investments and get an 'investment rating' which
is meant to recommerd which companies are worth buying. Included in the program
is a printer dump which prints yowr accounts and shares for a permanent record.

Every so often important news appears at the bottom of the screen which will
in some way affect your capital or shave prices, either in gensial or of a par-—
ticular company.

The various features of the game are well implemented and all of the inform—
ation 1s set out in a clear manner. Unfortunately, because of this, the share
prices had to be split over three screens and this was very annoying when
shares were owned on several screens. The only way to buy or zell was by enter—
ing the number of the company and on these screens there was no reminder of the
companies' numbers. The share price update was done only when 'U' was pressed &
this further slowed the game down.

Overall. it was well thought ocut and the various parts of the game fitted
together neatly. The first few games were quite interesting and enjoyable but
it soon became tediocus as one game was very similar to another.

()
SHAREWATCHER 11 costs £4.50 on tape or £7.50 on disc

Please make all cheques pavable to Matthew Pinder and send to :
MiP SOFITWARE, 4 WHAM HEY. NEW LONGTON, PRESTON, LANCS. PR4 4XU.

- J

15

HOWMEBREW - ADVENTURES REVIEW

Avventuring Games — Bomebreww

from JOHN PACKHAM

PANIC BENEATH THE SEA (Price £1.99 on tape or £4.50 on disc)

This is a two part adventure written using GAC (Graphics Adventure Creator),
access to the second part is via a password which is given at the end of the
first part. The plot is typical. A ship. that was carrying vital defence equip—-
ment, has been surk in the middle of the sea. You have been asked by the Gover-
nment to retrieve the cargo and return it safely.

It is rare to find Homebrew games with a good loading screen but the one for
Panic Beneath the Sea gives the impression of quality. Upon loading, you are
given a nice, short introduction which gives you the general idea of your miss—
ion without giving too much away. The first part of the game has some locations
with graphics whereas Part Two is text-only. The graphics where relevant, are
clear and unfussy and. although they take a little while to appear, add greatly
to the atmosphere. The text descriptions are quite detailed and there are many
clues given in them. The screen layout is straightforward with no attempt to
make 1t look particularly pleasing to the eye but as long as there are plenty
of puzzles and action this is a minor concern. The game is made more lively by
John Packham's own brand of jokes and the puzzles range from obvious to very
tricky and the game has plenty of character interaction. Unfortunately, the
parser, which is rather slow, contains some faults and accepts and understands
only a small number of words (often not the most common ones) .

The game contains a number of good puzzles (some easy others not) and it
creates a well built-up atmosphere but the limited parser kills exploration.
Not the best GAC game ever, but at the price it's not a bad buy.

CITY FOR RANSCM (Price £1.99 on tape or £4.50 on disc)

This 15 another game written using GAC and is slightly easier than 'Panic
Beneath the Sea' and 1s also about half the size. City for Ransom also has a
pretty loading screen and certain locations in the game have well drawn graph-—
ics which add to the atmosphere. Many of the criticisms of 'Fanic Beneath the
Sea' also apply to this gane. in particular the difficult parser. The object is
to find a bomb, which has been hidden in the city by a terrcorist who is demand—
ing a rather large ransom, within twelve houwrs. This game features many good
puzzles but again the parser destroys one's interst in the game after a while.
However, despite this, if you are just starting to play adventwes it is well
worth having a look at.

16

HOMEBREW - ADVENTURES REVIEW

PROJECT ANNIHILATION (Price £2.50 on tape or £4.50 on disc)

This adventure game was written using ADLAN (instead of GAC) and the diffe—
rence shows !!! The only disadvantage to this is that there are no graphics on
the tape version but there are on the disc program. The plot for this is that,
a lunatic has broken into a 'top secret establishment that manufactures bioleo—
gical warfare weapons' and has detonated a bomb. Everyone has escaped but they
have just made a new weapon which might be a bit unstable! So of you go again
to save the world from disaster.

The descriptions in this game are short but informative and everything is
laid out in a neat, organised and helpful manner. The parser in this game is
excellent. It has a wide vocabulary of useful words. is very friendly and gives
you pointers as to how you should have phrased things. By the use of the comm—
and 'WORDS' you get a short list of helpful words which can be used. The parser
reacts quickly and this enables you to progress with the game easily. During
the game you will come across a large number of puzzles. some of which are very
devious, but all have a logical solution. It has plenty of locations to visit
ard things to do and when this is combined with a decent plot the game becomes
rather compelling and addictive. Again the game has a beautifully drawn loading
screen and even without graphics (on tape) the game seems to be much better
than your average homebrew adventure. If you have the money spare. buy it. You
won't be disappointed.

4)
The games are all produced by John Packham and cost -
PANIC BENEATH THE SEA £1.99 (tape) or £4.50 (disc)
CITY FOR RANSOM £1.99 (tape) or £4.50 (disc)
PROJECT ANNIHILATION £2.50 (tape) or £4.50 (disc)

or order 2 for £3.00 (tape) or £6.00 (disc)
or order 3 for £4.50 (tape) or £9.00 (disc)
Please send all cheques/postal orders to :—
John Packham. 60 Hightown Towers, Warburton Road,
Southampton, Hants. 502 6HH.

\. J

The WINNER of owr competition from Issue Two was S. MESSINA of Heywood who will
soon be receiving a copy of MAXAM for his program called 'SEABATTLE' .
The RUNNER-UP was ANTHONY MILBOURNE from Thane who will receive
something for his program 'LOCO'. Both programs will appear
in a futwe issue of Print-Out.

17

BITS & PIECE Q/@ PROGRANMMING

HOW TO PATCH é)
THE FIRMWARE & Q%Q @Q

JUMPBLOCK. <2?

It is often desirable to be able to change some part of the computer's firm—
ware so that a certain function is carried out in a more efficient or different
way. Fortunately, the CPC provides the user with a very easy way of incorporat-
ing new routines with the minimum of difficulty. One such method is known as
'patching the jumpblock'. Using this methed. the jumpblock is altered so that
when a CALL is made it is re-routed away from the routines stored in the LOWER
ROM to the user's own routines which have already been assembled into the comp—
uter's memory. To fully understand how this works it is probably simplest to
lock at a BASIC example of the technique that we will be using.

An important part of structured BASIC programming is the subroutine. This
enables a program to be constructed in a logical fashion and prevents a program
for having large chunks of similar instructions. In BASIC a subroutine is call—
ed by means of the command GOSUB and the computer is then told to RETURN to the
main program at the end of the subroutine. However it is sometimes necessary to
have multiple subroutines (ie. subroutines which call subroutines) in crder to
make the program simpler and the routines more versatile. Of course the obvious
and most organised way of doing this. is to use more GOSUBs to call the further
subroutines.

However it is sometimes impossible to do this for one reason or another and
then a different method of calling multiple subroutines is required: this is
shown in the example program below. The arrows illustrate the path of execution
of the program.

10 GOSUB 1990 : REM Select name
———>20 ’ This would really be the
30 7 rest of the program
4@ END

1000 REM Select name routine
1010 a$="ARNOLD"
1020 GOTO 1500 : REM Print routine ~]

L—}lS@@ REM Frint Routine
1519 PRINT a%
152 RETURN—1

A similar promram can be written in Machine Code using CALL. RETwn and Jund
commands and a short example of this is shown on the next page. With a little
adaption this program can be used to patch the Jumpblock.

18

BITS & PIECES PROGRANMING

ORG &4000 : start adddress of M/C program
CALL routine ; calls routine
> RET —] ; returns to BASIC
h.routine LD A, "w" s A = ASCII code of "w’
JP prirut—-I ;5 Jjumps to second routine
Lé.print CalLL &BB3A ; print letter

return to just after the last

RET
_1

; executed CALL command

The arrows indicate the path of operation through the program above.

The dumpblach

Below is an example of how this routine can be used to change the jumpblock.
This program changes any calls to SCR SET MODE (8BCGE) so that instead of chan-
ging mode this call prints the letter 'm'. The first thing to do i1s to assemble
the piece of alternative code that will actually do the printing. The necessary
code is shown below and starts at &4600.

ORG &4000 ; start address of pragram
LG A, m" ; A = ASCIT code of "m’
CALL &BBSA ; print the letter

RET ; return

We now need to alter the jumpblock entry so that it re-routes any calls to
8BCOE away from the firmware roufine in the lower RUM to the pre—written code
at &4806. The way to do this is to change the bytes at EBCOE/EBCOF/8BC1A to -
8C3.800.,840 respectively (JP &4000). Now any calls to &BCOE or MODE commands
will be sent to £&4000 and the letter 'm' will be printed.

The way in which this relates to the above section on multiple subroutines
is not entirely obviocus. In your program you have either CALL &BCOE or a MODE
{which 1s the same thing). This sends the program to the jumpblock {(the first
subroutine) which JumPs (the same as GOTO) to the second subroutine which is
our code. At the end of owr code is a RETurn which sends the program back to
the command which immediately follows the CALL or MODE commarsl.

To restore evervihing to normal yvou only need to enter the following line :-

CALL &BD37
This resets the entire jumpblock to its original values.

19

LETTERS FEATURE

In this column we give your thoughts
an airing, trvy to solve your problems
and give you the chance to speak to D
other CPC owners. If you have got lEEZLlJJQ<l[Jl__ g;gi
something to say about the CPC.
write to the usual address.

Printer Problems - DMP 2000

I am hoping that you or one of vour readers may be able to help me over a
problem with my DMP 2000 printer in getting it to print graphics. (I have a CRFC
464 with expanded memory and disc drive.) In the printer manual itself there is
a graphics screen dump routine with an example program and I have tried this
but all I get is one line of smudge and nothing else.

Yet, my printer DOES print graphics as I have 'Stop Press' and have no
trouble with printing from that. I am wondering if it's something to do with
the DIP switch settings but I tried altering them recently but only ended up
stopping the thing printing text as well!! It is working OK now except for this
graphics problem. I have just got Dk'tronics graphics lightpen system and the
printer dump for Amstrad printers with that also doesn't work with my DMP 20@9!

Mrs Jo Wood
ROCHDALE

| I

Unfortunately I do not own a DMP 2600 and cannot offer a solution to your
graphics problem but if any of our readers do know the answer we would be very
grateful if they could get in touch with us so that we can pass it on to Mrs
Wood. However, I have heard of the problem with the Dk'tronics lightpen and the
solution i1s to use the screen dump for EPSON printers as opposed to the one for
AMSTRAD printers. This is because the Amstrad printer referred to is the old
DMP 1 which had a set of non—standard control codes. All other Amstrad printers
(including the DMP 2000) use standard Epson codes and so this dump should be
used.

20

LETTERS FEATURES

Machine Code Queries

I have tried to learn Machine Code many times, but I find the authors of
some seldom cater for the raw beginner. Often simple explanations are never
made and I would like to name one or two.

1) Machine Code programs don't seem to have line numbers, yet it is never

stated thus.

2) 1 suppose the (second) right hand column ; are REM statements or do they

have to be there for the program to run.

3) Some statements have an urderline in them (eg. test key) — does this need

to be entered as well.

4) Does upper case or mixed case make any difference or should it be strict—

1y adhered to.

D) How to use an assembler would be much appreciated.

I suppose I have entered into computing toco late in life, but I find it very
exciting and rewarding and also a very good pastime in retirement.

J. Hazeldine
LONGERIDGE

In answer to your questions about Machine Code programming :—

1. When a M/C program is entered into an assembler it is typed in without line
numbers in the form in which it appears in Print—Out. What the assembler then
does is to translate yowr program into pure numbers which it then pokes into
the correct space in memory. As the numbers are poked directly into memory and
any jumps are made to an address (in memory) no line numbers are needed.

2. The columns following the semi—colon (;) are indeed comment columns and
anything following the semi-—colon can be ignored.

3. Most assemblers allow you to enter names or LABELS which can be used in a
similar way to variables in BASIC. However, in M/C you cannot have spaces in
the labels and so the underline () character is a standard way of replacing
the space that cannot be included.

4. The use of upper and lower case depends on yowr assembler. Some are more
tolerant than others but generally it does not matter what case is used.

5. Again. because there are so many assemblers on the market it would be
impossible to explain how to work each one in this megazine but if you have a
specific problem with any assembler we will do our best to solve it.

21

LETTERS FEATURE

Cassettes versus Discs

I think that Print-Out is cne of the best magazines around, mainly because
it contains so many useful articles on programming. I saw an advert for it in
‘Amstrad Action' and decided to give it a try. Because of the very reasonable
price I decided I wouldn't be loosing much if it turned out to be rubbish. I
think the idea of selling cassettes with each issue's programs on, is great &

I would certainly be prepared to pay £1.006 for a few programs I wanted. If vou
recorded how many copies of each program you sold, you could do a bumper cass—
ette every six months or so, containing all the most popular ones. You could do
another competition with the prize being a cassette containing as many programs
(from Print-Out) as the winner can fit on it. I think that lots of competitions
with small prizes are better than a couple with huge prizes because more pecple
can win. If you do find a shop with firmware manuals still in stock, you should
buy a few and sell the spare ones through the magazine, I bet you'd get loads
of orders (mine for a start). I am luck encugh to own a 6128 and Cassette Unit
but lots of people just have 6128s and by making everything in the magazine
cassette based you are losing business. I would like to see articles on :— How
to use the expansion port on a 6128 to control robots, Modems — the pros and
cons, Hacking and Artificial intelligence.

Anthony Milbourne
THAME

I'm glad you like the idea of selling Program Cassettes because we are now
offering a special bargain to those of you who have missed earlier issues of
Print-Qut. You can now obtain the Program Cassette ard copy of the magazine for
each of the back issues for just £1.75 including postage and packing. You can
also obtain the programs for each issue on disc for 5@p providing you include a
standard Amsoft 3 inch disc with vour order. If any of our readers does know of
a shop which still has Firmware Manuals in stock please get in touch with us as
we know of many people who would be interested in buying one.

All of your suggestions for future articles have been taken into account and
if we receive enough requests for them we may include them in future issues.

If you have any comments on anything to do with the Amstrad CPC, then please
write to us at :— FRINT-OUT, 8 Maze Green Road. Bishop's Stortford.
Hertfordshire CM23 2PJ.

22

MAZE PROGRAM

— MAZE

(by BOB TAYLOR

The chiect iz to start at one side of a maze and find vour way to the exit
at the other side. You decide how large vou want the maze to be and then a
clever routine makes a random path through it. Side chambers are created from
the unused parts and finally a few extra walls are removed to make the route
even more complicated. In addition a diamond i1s placed in any corner of the
maze which 1s not an entrance or an exit. Each diamond carries a bonus which
reduces your total number of moves. However yvou don't have to collect bonuses
and could decide to avoid them if at all possible.

If you think the maze drawn 1s too difficult. vou can press the 'A' kev and
another of the same size will be drawn. Otherwise press SPACE or any other key
when you are ready and vyou will enter the maze ard be presented with a perspe-
ctive view from where you stand. Movement is by means of the UP cursor key and
each move i3 counted, even when you walk inte the walls! The other curscr kevs
can be used to twn LEFT, RIGHT or ARCUND but don't count as moves. The exit &
entrance are shown as large crosses, but once inside the maze you cannot leave
again via the entrance.

Fach diamond present appears on the far wall of its room and can be collec—
ted by Just walking into the room. This earns you the bonus and a free lock at
the plan of the maze showing vour position and the direction you are facing.
Once collected, the diamond disappears. To retwn to the maze, just press any
key. The bonus cannot take vour move score to less than zero, so if vour score
when you get there would be reduced to below zerc. it might be worth planning
your route so as to get the full bonus by going there later. The bonus is the
square root of the total gsize of the maze.

If you get lost you can see the plan by pressing 'M', although this will
result in a penalty of extra moves (as large as the bonus) being added to the
score. Once out of the maze. the plan is shown together with the paths vou took
(all those false moves are shown too), but with no penalty of course.

You can then choose to go through the same maze again from the entrance by
pressing 'R', either to use the program as a multi-player game. or to try to
lower your own score, or yvou can start another maze of either the same size by
pressing 'A' or one of a completely new size by pressing any other key.

Following the program listing are comments on its workings and the various
techniques that the program employs.

MAZE PROGRAM

PROLPRAM: "

F11
LF21
{FF1
feCil

£44]

[FD1
[361

L&Fd
tF91
[B11]

£C33
[461]

{B11
L1221
[D?1
{1C3

{F31
el

[B31
£c413

feo]
£483
£4c3
L7131
{843
[AE]
{591
L6353
[De]

(F51
CD&3
[8el
£C23

10
20
30
40

50

&0
70

80
2@

' MAZE by Bob Taylor for PRINT-OUT (copyright 1989)
TkXx Set up ¥kxX p— —
MEMORY &3FFF:RANDOMIZE TIME:DEFINT a-z:m(©)=0

SYMBOL 248,0,0,32,124,32:8YMBOL 249,0, 16,56, 16,16,16:8YMBOL 250,0,0,8,
124,8:8YMBOL. 251,0,16,16,16,36, 16

SYMBOL 252,0,90,0,0,0,0,0,1:8YMBOL 253,1,1,1,1,1,1,1,1:8YMBOL 254,0,0,0,
2,0,0,0,255:SYMBOL 255,1,1,1,1,1,1,1,255

FOR n=28000 TO &BO1E:READ i$:POKE n, VAL ("&"+1i%) :NEXT

DATA 3e,40,cd,08,bc,21,00,40,11,00,c0,44,4d,ed, b?, 3e,c0,c3,08, bc, 21,00,
c0,11,00,40,42,4b,ed,b®,c?

MODE 1:INK @,13:INK 1,@:WINDOW #1,8,33,1,25

*Xkk Make Maze XXX

100 LOCATE 1,24:INPUT"Maze size, width (5 to 36) "jw:IF w<3 OR w>36 GOTO

1o

110 LOCATE 11,25: INPUT"height (5 to 20) ";h:IF h<G OR h>20 GOTO 110
120 CLS: INK 2,10: INK 3,12:ERASE m:DIM m(2,w+l,h+1) :c=20—INT ({w+1)/2) 1r=11-

INT ((h+1)/2)

130 ORIGIN 319-16XINT ((w+l1)/2) ,224+16XINT ((h+1) /2)

140 FOR a=0 TO h:MOVE @,~16%a:DRAN 16%w,—16Xa:rNEXT

150 FOR r=0 TO w:MOVE 16%n,Q:DRAW 1&6%n, ~16Xh:NEXT:ORIGIN 320,200

160 FOR y=0 TO h:m(1,0,y)=9:FOR x=0 TO w:m(d,x,y)=2533:NEXT xim{l,x,v)=%:

NEXT y

170 FOR yv=0 TO h+1 STEP h+1:FOR »x=0 TO w+l:m(l,x,y)=7:NEXT X,y
180 y=1+INT(RNDxh) : LOCATE Coy+r:PRINTY>" s ix=ligy=yim(Q,x~1,y)=202:m(1,1,y)

=4 : =@

199 %%k Make path through Maze XXX
200 r=n+1:d=2+((d=1 AND RND<K@.8 OR d=2 AND RND(Q)<0.45)AND y<>1)—((d=3 AND

RND{(@) >0.2 OR d=2 AND RND(©)>0.55)AND y<>h)

210 y=y+(d=1):m(Q,x,y)=m(Q,x,y)AND QRFE-(d AND 1))

220 IF x<>w AND n=6 THEN n=0:m(Q,x,y)=m(®,x,y)AND &FE

230 LOCATE x+c,y+r:iPRINT CHRS(m(@,x,y));

240 y=y—(d=3) :x=x—(d=2) :m (1, x,y)=d+2: IF x<{>w+l GOTO 200

250 LOCATE x+c,y+r:PRINT" >"; tey=y: d=0:60T0 2890

26@ T kxx Make side chambers XXX

270 PAPER 3:m (@, x+(d=0) ,y+(d=1))=m(Q, x+ (d=0) ,y+(d=1))ANDRFE —(d AND 1))
280 LOCATE x+c,y+r:PRINT CHRS (m(@,x,v));:IF x=1 AND y=sy GOTO 380

290 dx=(d=0)—(d=2) 1 dy={(d=1) —(d=3) : x=x+dx:y=y+dy: IF m(1,x,y)=0 THEN

m{l, x,y)=cd+2

I00 Fw=m (1, x+dx,y+dy)=0: IF fw AND RND<Q.S GOTO 270

310 sw=m (1, x+dy,y—dx)=0: IF sw AND RND<Q.6 THEN d=(d+3)MOD 4:GOTO 270
320 1F m(1,x—dy,y+dx)=0 THEN d=(d+1)MID 4:G0T0 270

330 IF sw THEN d=(d+3)MOD 4:GOTQ 270

(continued on the next page...)

24

MAZE FPROGRAM

(continued from previous page)

(991 340 IF fw GOTO 270

(D21 350 IF m(l,x—dx,y-dy)=0 THEN d=(d+2)MOD 4:G0T0 270

(D51 360 PAPER 2:1IF m{l,x,y)=0 THEN m(1l,x,y)=d:id=m(l, x+dx,y+dy)MOD 4:G0T0 280
ELSE d=m(1,x,y)MOD 4:6G0T0Q 280

[B11 370 ’xxx Make extra openings XXX

(B11 380 PAPER @:FOR n=1 TO wXh/20:x=INT (1+RNDX (w)) 1 y=INT {(1+RNDX (h)) : a=INT
(233.5+RNDx1.5)

[24] 390 IF (a<>254 OR x<>W)AND(a<>253 OR y<>h)AND m(Q,x,y) <> (m{0,x,y)AND a)
THEN m (@, x,y)=m(@,x,y)AND a:LOCATE x+c,y+r:PRINT CHR$(m(®,x,y))ELSE
=n—1

[C6] 400 NEXT:FOR rn=1 TO 300@Q:NEXT:CALL &B8014:INK 2,13:INK 3,3

[53A] 410 FOR a=1 TO h:FOR =1 TO wim(1,n,a)=&BO0:NEXT n,a:x=1:y=5y:d=2:mov=0

[56] 420 n=INT(S&R(w*h)):m(2,l,1)=~n*(5y<>1):m(2,1,h)=~n*(5y<>h):m(2,w,1)=—n*
(ey<>1):m(2,w,h)=—nk (ey<{>h)

[FAT 430 LOCATE 11,24:PRINT"Press SPACE to start':LOCATE 5,25:PRINT" (or A to
create a different maze)"

[E1T 440 m(l.x,y)=m{l,x,y)0R(&10—-(d=3)-2X (d=0) 4% (d=1)-8% (d=2))

[261 430 LOCATE x+c,y+r:PRINT CHR$ (22)CHRS$ (1) CHR$ (d+248) CHR$ (22) CHR$ (@) 3

LCCT 460@ i$=UPPERS(INKEYS$): IF i$=""GOTO 460 ELSE IF i$="A"GOTO 120:ELSE a=—3x%
(1$=CHR$ (242)) — (i $=CHR$ (243)) ~2% (i$=CHR$ (241)) : IF a THEN d=(d+a)MQD 4

[B2] 470 " %X Print Compass arnd Meru %k

LD3] 480 CLS:PEN 3:LOCATE 1,6:PRINT"F’wrd "CHR$ (240)TAB(37) "N"TAB(1) "Left "
CHR$ (242)

{5B] 490 PRINT"Right "CHR$(24Z)TABIS) "W E"TAB(1) “About "CHRS(241)

[SF1 500 PRINT"Map MUTAB(37) "S" :LOCATE 35, 1S:PRINT"MOVE“:PEN 1

[A71 510 "k% Draw view insids Maze KX

[6P] 520 CLSH!I:tx=x:ty=y:s=200:da=d AND 1

£8CT 530 FOR n=1 TO MIN(14, - ({w+1-x) X (d=2) +xk (d=0) + (h+1—y) X (d=3) +y % (d=1))) :
Pe=s:5=0.8Xs: pSWw=—PS pru=ps

LE?] 540 IF m(2,x,y)THEN IF n=1 THEN CALL &8000:PEN 3:LOCATE 14,24:PRINT
MIN(m (2, x,y) ,mov) "MOVE BONUS' : mov=MAX (@, mov-—m (2, x,y)) :LOCATE 10,25:
PRINT"press any key for maze';:PEN 1:m(2,x,y)=0:60T0 449

[C31 350 IF m(2,x,y)THEN MOVE @,s/2:DRAW -s/2,0:DRAW @,-s5/2:DRAW s/2,0:DRAN @,
s/2

CEE] 560 ex=n: fw=m(@,x+(d=0) ,y+(d=1))AND(1+da) 1 IF fiw THEN n=14 ELSE IF d=2 AaND
x=wW OR d=@ AND x=1 THEN ex=0

L491 570 1IF m(@,x+(d=1), v+ {(d=2))AND (2—da) THEN sw=ps ELSE sw=s:IF d=1 AND %=1 OR
d=3 AND x=w THEN psw=-s ELSE IF NOT m(@,x+(d<2)~(d=3),y+(d=1 OR d=2)
~(d=0))AND(1+da) THEN IF fw THEN psw=-s5—-1 ELSE psw=—INT(Q.98%ps)

[1AJ 380 IF m(@,x+(d=3),y+(d=0))AND(2-da) THEN rw=ps ELSE rw=s:IF d=3 AND x=1 OR
d=1 AND x=w THEN prw=s ELSE IF NOT m(Q,x+(d=0 OR d=3)—(d=1),y+(d<2
—(d=2))AND (1+da) THEN IF fw THEN prw=s+1 ELSE prw=INT(@.98%ps)

[F2] 390 MOVE psw,sw:DRAW -s,s5:DRAN —s,~s:DRAW psw, —sw

(continued on the next Dage...)

25

MAZE PROGRAM

(continued from previous page)

[A3] 600 IF psw=-s THEN MOVE -ps,ps:DRAW -s,-s:MOVE —ps,—ps:DRAW -s,s ELSE IF

£D23
LAB]

{F41
LE7]

[B4]
CB21
£3C]
LED]

{713

[F2]

£7D1

[351

LADJ

{131

£241

L&F]
[243
£ecl
£341

£A81]
{Do]

e8]

610
620

&30
640

650
660
670
680

620

700

71@

720

730

740

730

760
77@
780
790

800
810

820

psw=—INT(0.98%ps) THEN DRAWR ©,2%s ELSE IF psw=—s—1 THEN IF d=2 AND
x=w OR d=0 AND x=1 THEN MOVE —1.1%s,0.9%s:DRAW —ps,0.75%s:MOVE —-1.1%s,
~Q.9%s: DRAW —ps,—0.75%s

MOVE prw,rw:DRAW s,s:DRAW s,-s:DRAW prw,—rw

IF prw=s THEN MOVE ps,ps:DRAW s,-s:MOVE ps,—ps:DRAW s,s ELSE IF prw=
INT (@.98%ps) THEN DRAWR @,2%s ELSE IF prw=s+1 THEN IF d=2 AND x=w OR
d=@ AND x=1 THEN MOVE 1.1%s,0.9%s:DRAW ps,@.75%s:MOVE 1. 1%s,-0.9%s:
DRAW ps,—-0.735%s

x=x+ (d=0)—(d=2) 1 y=y+(d=1) —(d=3) :NEXT : x=tx:1y=ty

IF ex THEN MOVE -s,s5:DRAW s,5:MOVE —5,-s5:DRAW s,—s ELSE s=0.%%s:MOVE
-5,5:DRAW s5,-s:MOVE —s5,-s:DRAW s,5:1F x<>1 AND d=0 OR x<>w AND d=2
THEN ex=n—1

LOCATE 37,8:PRINT CHR$ (248+d) :LOCATE 35,17:PEN 3:PRINT mov:iPEN 1

TX¥k Get move XkX

i$=UPPERS (INKEY®) : IF i$=""G0T0O 670

a=—3X (13=CHR$ (242))~ (i$=CHR$S(243)) 2% (i$=CHR$ (2411) : IF a THEN d=(d+a)
MOD 4:60T0 320

IF is="M"GOTO B10

IF i$<O0HRS (240)G0TO 670:ELSE m(l,x,y)=m{l,x.y)OR(&1@+d-(d=3) —8% (d=0))
IF ex>l THEN x=x+(d=0)-(d=2) :y=y+(d=1)—(d=3) :m(l,x,y)=m(l,x,y)OR{&10~
(d=3) 2% (d=0) —4% (d=1) ~8% (d=2)) :mov=mov+1:60TA 52

IF ex OR x=1 THEN LOCATE 13,25:FPRINT LEFTS ("ENTRANCE CLOSED",-13%
(ex=@)); :S0UND 1,480,50:FCR a=1 TO 1000:NEXT:mov=mov+1:PRINT CHR$(17):
PEN 3:60T7T0 650

XX Escape kX

mov=mov-+1:PEN Z:LOCATE 35, 17:PRINT mov:LOCATE 14,22:PRINTCUT IN "mov
"MOVES" :FOR n=1 TO 13@0:NEXT

CALlL &8009:L0CATE 14,22:PRINT"OUT IN "mov'MOVES":PEN 1:LO0CATE &,23:
PRINT"press R for repeat of this maze, ":LOCATE 6,24:PRINT"A for
another of the same size":LOCATE 7,25:PRINT"or any other key for new
maze':

PEN 3:PRINT CHR$ (22)CHR$(1)3:FOR a=1 TO h:FOR n=1 TO w:IF m(l,n,a)<>
&B® THEN LOCATE n+c,a+r:PRINT CHR$(m(l,n,a));

IF INKEY$<>"" THEN n=w:a=h

NEXT n,a:PEN 1:PRINT CHR$(22)CHR$(Q) ;

1 $=UPPERS (INKEYS) : IF i$=""G0T0O 790 ELSE CLS:IF i$="R"THEN CALL &Bowo:
GOTO 410 ELSE IF i$="A"GOTO 120 ELSE 8@

P kX% Show plan of Maze ¥&X

CALL &B00o:IF mov>® THEN a=INT (SER{(wkh)) imov=mov+a: L OCATE 12,24:PRINT
a"MOVE PENALTY"

LOCATE 9,25:PRINT"press any key for maze":6070 430

26

MAZE PROGRAM

MAZE - NOTES

The program is typical of Spectrum BASIC programs with much manipluation of
seemingly unrelated numeric variables to achieve results. An array with three
dimensions is used (the three dimensions are not the three parts about to be
described. For that, one of the diemensions 1s divided into three). One part of
the array holds the ASCII codes of User Defiened Characters which represent the
walls present for each square of the maze (the initial drawing of the maze grid
is done using graphics and not printing so as to speed up its presentation). A
second part is used firstly during the path routine to hold a value which repr—
esents the direction from which that square was entered. This is then used to
retrace the paths back to the entrance during side—chamber creation. During
movement through the maze, this part is used to hold the player's path which
will be displayed when the maze is exited. The last part of the array holds the
bonuses yvou could receive from collecting diamonds.

A typical technigque is to operate on numbers using the fact that a False
condition evaluates to a 0. while a True means —1. On the Spectrum. True would
have heen 1 and this is very convenient for use in this way. On the (CPC. the
negative value, whilst being essential for use with the logical operators AND,
OR and XOR (the Spectrum only had AND and OR and they were not used for logic)
does mean that all signs refering to conditions have to be inverted. making for
further obscurity in an already complex looking program. If you can work throu—
gh to discover what the computer is doing. yvou could be rewarded with ideas to
use 1n your own programs.

M/ RAOUTINE

A short Machine Code routine is poked into memory. The CPCs are quite slow
at printing characters on the screen, so to avoid a slow build-up of the plan
of the maze. a copy is kept in the lower screen area {(at &4000 to &7FFF) from
where the routine re-copies 1t to the normal (upper) screen at &COVY to &FFFE.
To see the upper screen while this is happening would show a sort of 'Venetian
Blind' effect due to the way that screen RAM is laid ocut. To eliminate this.
the screen is switched to lower before the copy and then back to upper after—
wards. The visual effect is an instantanecus showing of the plan. Compare this
to the time taken to FRINT the route taken, especially on larger mazes.

27

BASIC DEPROTECTION PROGRAMMING AID

BASIC
DEPROTECTION

PROGRAMMING UTILITY —

We have received several requests for us to print a program that will remove
the protection on a BASIC program that has been protected using the command :—
SAVE '"<Filename>",P
Files that have been saved by this command can then only be loaded and run by
using the command :— RUN "<filenama>"
This means that the program cannot be loaded. listed. altered or saved without
first removing this protection. The program printed below does remove this pro—
tection and allow you to study or alter the program. However as most commercial
software is not written in BASIC and 1s also protected by highly complex loader
programs, this program will not allow you to break into and hack proper games.
Following the program are notes on what it dces and how. a brief explanation
of what the CPC does when it protects a BASIC {(cr a Machine Code) program and
instructions on how to use the program.

Frogram

[F131 10 *DEPRO-LOADER copyright R Taylor 1989

(327 20 PESTORE 110:PRINT:PRINT'"Flease wait a few seconds'

{71 30 FOR 1lin=0 TO &40/8-1:total=0:FOR =0 TO 7:READ a%$

[C4] 49 byte=VAL ("&''+a%$) :POKE &BEB@+1ink8+n.byte

[4B1 50 total=total+byte:NEXT n

LoDl 60 READ as:IF VAL ("&'"+a$)(O>total THEN PRINT:PRINT'"Error in line'linkl@+11@
:PRINT:END

L7F3 70 NEXT 1lin:IF PEEK(6)=480 THEN POKE &BEB3,&45

(623 B0 PRINT:PRINT"A1l M/C loaded":PRINT:PRINT"Press ’3* to save M/C as DEPRO.
BIN" :WHILE INKEY$="":WEND:IF INKEY(6@)<>—1 THEN BAVE “DEPRO.BIN",B,
&BESY, &40

£76] 20 PRINT:PRINT"To Load and Initialise DEPRO just Enter:":PRINT'LOAD"CHRS$
(34) "DEPRO.BIN"CHR® (34) " : CALL &BEBQ":PRINT"in Direct Command Mode with
the Disc or Tape inserted at the correct place":PRINT"To switch off
just Enter CALL &BESO,0"

[EA] 109 END

(continued on next page)

28

BASIC DEPROTECTION PROGRANRING AID

(continued from previous page)

[2B1 110 DATA B7,3A,7A,BC,20,1C,FE,C3, 424
[3A3 120 DATA C8,32,BB,BE,2A,7B,BC,22, 3F6
[2E3 130 DATA BC,BE,3E,C3,21,AD,BE,FS. 4FC
[EC] 140 DATA ES,32,7A,BC,22,78,BC,E1, 487
(D21 150 DATA F1,C9,FE,C3,C0,3A,BB,BE, SEE
[D3] 1460 DATA 2A.BC,BE, 18,EA,CD,AS.BE, 4D6
[971 170 DATA FS,AF,32.2C,AE,F1,0D,7A, 4E8
(091 180 DATA EC,18,D7,00,00,00,00,00, 1AB

To use the above program. first type 1t in exactly as it appears (ignore the
numbers in square brackets at the beginning of the line. these are LINECHECKER
codes and should not be typed in. They are there to help vou spot any typing
errors that may occur) then run the program. When prompted insert a tape or
disc to which the Machine Code is to be saved for future use. If vou wish to
use the program in the future vou simply have to load and initialise this code
simply use :— LOAD “DEPRO.BIN":CALL &BEBO
You can then load the program to be deprotected in the normal way. When it is
loaded vou will find that vou are able to list and alter the program.

EXPLANATIUN

At &AEZC on the 6128 (or &AF45 on the 464) there 1s a system flag which is
set when a protected BASIC program is detected during loading. This fleg is
tested after LOADINg and, if it is set, the whole of the Iree Space area of
memory 18 wiped clean including the BASIC program area. thus preventing LIST--
ing of the program. However. this flag is not checked after RUN or CHAIN and
this explains why the program can be loaded and run with these commands.

The ‘'deprotecter' works by intercepting the call to CAS/DISC IN CLOSE at
SBC7A after loading, and resetting the previcusly set flag to &8 before cont-
inuing with the close routine.

The program is protected by XORing i1ts bvtes with a sequence of &80 random
bytes before SAVEing. During the loading process. each byte is XORed again with
the same byte from the sequence so restoring the original value. The sequence
does not seem to be present anywhere in ROM or RAM. so must itself be derived
from existing bytes somehow. The sequence must be the same for all versions of
the CPC as a program SAVEd on a 464 can be LOADed and RUN on a 6128.

29

GAMES
REVIEWS

Fantasy World

- i —I

FANTASY WORLD DIZZY is the third of Dizzy's adventures from Codemasters and
costs £2.99 on tape only. As with all of the games in this series, you control
Dizzy, a cute little egg, who in this particular game must defeat the Evil King
who is holding his 'egg—friend'., Daisy. The plot is a standard one — Daisy has
been imprisoned in the Wizard Weird's Tallest Tower in his Cloud Castle. Dizzy
was thrown in the King's Dungeons and must rescue Daisy by using the many items
that he finds throughout ‘'Fantasy World'. However, even when he has managed to
free Daisy there is a further mission — Daisy orders him to find 30 Gold Coins
so that they can buy their own house and live happily ever after. The game is
not nearly as bad as the storyline and contains many unusual and funny features
which add to the atmosphere.

The game takes place in 'Fantasy World' and boasts over 50 locations includ-
ing volcanoes, dragons' lairs, mysterious new worlds, palaces and finally the
Cloud Castle itself. Each of these locations is named and contains detailed and
colourful graphics which draw you into the fantasy world of Dizzy and the other
Yolkfolk that you meet on your travels. The only real weak point of the game
was the sound — the music lacks any tune whatsoever arnd slows down to a drone
in some rooms — and there are no sound effects throughout the game at all, but
if you turn the volume off you should be able to forget all about the sonix and
enjoy the game.

Dizzy is incredibly well animated and rolls, leaps, tumbles and falls in a
most convincing and amusing manner. The various monsters which he must defeat
in the game are also well thought cut and designed as are the Yolkfolk from
whom he gains valuable information and items of equipment. The Yolkfolk are
probably the greatest addition to this game and the clever and witty conversat—
ions that the hero has with them are a pleasuwre to read. Each of them has an
individual style of action ranging from the lazy Dozy to the historical Grand-—
Dizzy that helps to make the game far more interesting than other games of the
same type.

The game differs from Treasure Island Dizzy
by allowing you to hold upto five items (if you
have the bag) and the use/drop menu enables you
to make sure that the right item is used at the
right time. You also have three lives which are
needed to complete it safely. The game contains
many nice additions to the game that increase
its playability such as when Dizzy has drunk a
bottle of whisky and starts making random rolls
in all directions. The game is both joystick &
keyboard controlled (although you cannot redef-—
ine the keys they are easy to use and well pos—
itioned) .

The game is very easy to get into and highly
addictive as there are many obstacles that need
to be passed by utilising the numerous objects.
Unlike some games it is not hard to get started
but contains enough tricky sections to keep you
playing for a long time. Apart from the sourd,
there are no real problems and it is an entert—
aining game to have and at £2.99 it represents
excellent value for money.

MARIK

I really enjoyed this game. The graphics were excellent and the plavablility

was bremenlous ol the sound wos abyomal. T found the pick up and GG st o
a bit confusing at first but on the whole it was of a very high standaxd. It is
the best Dizzy adventure yet. I'd recommend it to anyone. 63:3

JON

The graphics in Fantasy World Dizzy were well drawn but many of them were
quite similar with little variation. The puzzles in the game were well thought
out and had logical solutions but were possibly a bit too easy. The music was
terrible but this did not spoil the game too much. A good buy il 53’7

“1OM

The game, although in design very like previous ones, has been put together

very well with clear graphics, tricky puzzles, funny characters to find and is
extremely playable. However it may be a bit easy to complete and the sound can
easily be improved on. Still a fantastic game to have. 63()

31

Grid Iron IL fon

GRID IRON 2 is written by Alternative Software and costs £2.99 con tape only.
In the game you play the part of a manager of an American Football team who must
successfully guide his team through the 15 games of the season and finally win
the Superbowl itself. The game allows you to trade players, select your team,
play the game or even borrow money from a bank. All choices are made from a
series of menus and various information such as injuries to players and finance
are also displayed when relevant. Once you have selected your team and elected
to play the game, you are shown a spectator's view of the stadium and can see
the highlights of the game as blocky figures run about the playing area. At the
end of the match you are shown the results of all the other teams and then YOou
repeat the sequence to play another game.

Unfortunately, the game is terrible to play. It is written mainly in BASIC,
with a machine code routine tacked on to allow you to see the games, and 1t 1is
full of bugs. The menus take an age to be displayed ard many of the options do
not work as they are supposed to and this causes great confusion. On example of
this is when your name changes randomly during the season. The skill and energy
indicators for each player in your team have no effect and again these change
for no apparent reason. At certain points in the game the computer crashes and
informs you that there is a 'SYNTAX ERROR in Line ... No matter how well desi-
gned a game is, problems like these are bound to destroy its appeal .

This game should never have been released ! | > LI
The gameplay is dull and it is incompetently
programmed (and in BASIC. too '!'!') There is no
sound except a cheer and a beep as the results
are printed. The graphics are small and unint—
eresting. Avoid this game if you can !!! :377

JOIN

The bugs 1n this game are atrocious and the
sound 1s non—existent. The game graphics were
quite well done but soon became bhoring as all
of the moves were identical. The game was also
far too easy and became very tedious.éles

“LOM

This game looks as though it is § years old, AW
the sound and graphics are terrible. I lost all
interest in it before I had finished a season !

4]

AMSTRAD
RANGE

J e
299

32

MACHINE CODE TUTORIAL

MACHINE CODE-

ARITHMETIC

In our last issue, we showed you how to print either single letters or whole
messages and introduced the concept of subroutines. In this issue we will cover
some examples of simple arithmetic in machine code and how to show the results.

I always feel that the best way of learning something is to set vourself a
task involving the topic you are studving and try to arrive at a solution for
that problem. In this case. we shall try to write a program that will accept 2
numbers from the user. check to see whether they are less than 3 (but more than
zero), and then calculate their sum and print it on the screen.

The best way of writing any program (but especially in Machine Code) is to
write small modules that carry out certain functions and then fit them together
to farm a complete program.

The first module involves getting a number from the operator and printing 1t
on the screen. We shall use several suwaroutines so that they can be re-used as
often as possible. To input a number (or letter for that matter) we need to use
a new firmware call. There are about six CARLLs in the Firmware Manual that look
promising but the one that is best suited to our needs is KM WAIT CHAR which is
at address &BBB6. This CALL waits until a key is pressed and when one is. the A
register holds the ASCII code of the character entered. This CALL however. does
not then print the character to the screen. If we were using BASIC the computer
would antomatically accept o character and then print it on the seveen b in
M/C, we must do even the simplest task ourselves. So0. we then need to call TXT
QUTPUT (&BBSA) to do this. The small routine below which we have called .input.
will do this for you.

ORG &400@

.input
CD 96 EB CALL &BB@6 : input character (A contains ASCII code)
CD 5A BB CALL &BB5A : print character whose ASCII code 1s in A
Cco RET : retwrn to BASIC
We now need to print a '+' sign. input another number and print an '=' sign.

To do this we will use the same routine as we developed above but it will be
turned into a subroutine which can be used to input both numbers without having
to repeat the same chunk of code. The routine below will do this but it will
need a considerable amount of alteration before it can be put to the final use
that we want it for.

53

MACHINE CODE TUTORIAL

ORG £4000
Ch 11 4@ CALL input ; goto 'input' subroutine
3E 2 ID A,43 ; A = ASCII code of a '+' sign
CD 5A BB CALL &BBSA ; print '+ sign
CD 11 40 CALL input ; goto 'input' subroutine
3E 3D ID A,61 : A = ASCII code of an '=' sign
CD 5A BB CALL &BB5SA : print ‘=' sign
Cc9 RET
.1nput
CD 26 BB CALL &BBV6 : input character
CDh HA BB CALL &BBSA : print character
C9 RET : retuwrn from subroutine

That is all the work on the presentation that we need to do hut now we have
to tackle the more complicated part - doing the calculations. Unlike BASIC, we
cannot just use the inputted numbers to do cur sums but first need to convert
them into numbers that the computer will accept. There are two problems -~ the
first is easy to explain and quite simple to solve whereas the second is rather
mere tricky.

1. If you follow the path the program above takes whilst being executed, 1t
should be fairly obvious that the A register, which 13 used to store the value
of the inputted number, is alsc used for other things. For this reason the A
register can only be used as a temporary store for the number's value. The easy
solution 1s to copy the contents of the A register to ancther register after
the routine. .input. has been executed and then to copy 1t back when we are
ready to do the calculations. or this we will use the b and U registers.

2. We have already mentioned that after .input has been called, the A regis—
ter contains the ASCII code of the number that the user entered. However, this
code 1s not the value of the number in decimal. For example if the user pressed
the 'l' key then A would contain the number 49 and this could rot be used for
arithmetic. If you look carefully at the numbers and their ASCII codes a simple
solution should appear. By subtracting 48 (&30) from the number's ASCII code.
yvou get the real value of the number.

Once we have the actual values of the numbers in B and D, and the sum has been
printed out, 1t is very easy to do the addition. The program below does all
that 1s necessary providing B and D contain the correct values.

ORG 84000
78 ID A.B : let A = the contents of B
82 ADD A.D ; add D to A and store the result 1n A
C9 RET

34

MACHINE CODE TUTORIAL

Of course before the answer can be printed we have to convert the real value
back into a printable ASCII code number. To do this we just add &30 to A. The
answer can then be printed using a normal call to &BBSA. The program below is
the completed program so far. In it there is one mnemonic which you may not
recognize, that is SUB but all it does is subtract the value following it from
the value in the A register (with both ADD and SUB the answer is stored in A).
ADD and SUB are explained more fully after the program.

ORG 64000 ; start address of program
CD 1E 40 CALL input
D6 30 SUB &33 ; convert value in A to proper value
47 ID B.A : store value in B
3E 2B ID A,43
CD 5A BB CALL &BBSA : print '+ sign
CD 1E 40 CALL input
De 2@ SUB &30 ; convert value in A to proper value
57 1D D,A : store value in D
3E 3D 1h A.61
CD 5A BB CALL &BBSA ; print '=' sign
78 1D AB ;
82 ADD A.D ; do the addition
C6 30 ADD A.830 ; convert number to its ASCII ccode
CD 5A BB CALL &BB5A ; print the answer
C9 RET : return to BASIC
.input
CD @6 BB CALL &BBG6 input character
CD 5A BB CALL, &BBSA : orint character
C9 KET : retwn from subroutine

Both the ADD and SUB commarnds work only on A out of the 8 bit registers. So
it is not possible to have the command SUB B.D. This can be quite restrictive
but as you become more skilled you will be able to find ways round any problems
that you meet. The ADD command needs vou to specify that it is the A register
you wish to alter (eg. ADD A,34) but with SUB it is assummed (eg.SUB 34).

This routine doesn't work for numbers larger than nine or smaller than zero,
or even foy sums which have an answer that lies cutside these two values. If
you enter two numbers which have values that when summed come to more than nine
you will get various symbols for vowr answer. In our instructions as to what we
were to do, we were told to check whether they fell between zero and five and
if not, to get another entry. In order to do this we shall need to modify our
input routine as follows :—

35

MACHINE CODE TUTORIAL

.input
CD @6 BB CALL &BB06 ; get the number
FE 20 CP 48 : subtract 48 from it but don't change A
FA 1E 40 JP M, input ; Jump to .input if it is negative (ie. <48)
FE 39 CP 57 : subtract 57 from it but don't change A
F2 1E 49 JP P, input ; Jump to .ipput i1f 1t 1s positive (ie. >57)
CD 3A BB CARLL &BBS5A : print the value
C9 RET ; return from subroutine

This will allow you to enter only 8, 1, 2, 3 or 4 and so the answer cannot go
above eight. The two instructions, JP M, input and JP P, input are known as cond-—
itional jumps and are rather complicated. They will be explained in the next
issue but for now you will have to take them on trust. This prevents strange
symbols being printed in place of numbers. but is rather limiting. Most calcul-
ations that are done come to more than nine and as this program cannot handle
them something more complex is required.

At some time or other you will need to print a large number. The numbers vou
will want to print from machine code, whether they are scores for a new game or
number of records entered in a Database. will be stored in a single register. a
register pair or perhaps stored in the memory. Numbers up to 255 can be stored
in a single byte (or register) while those up to 65535 will require two byles
with the low byte first 1f it is stored in memory {(eg. the number &C145 would
be stored in memory as 49 Cl). You must remember however, that a prinfted number
always has the digits representing higher multiples of 1@ rirst.

In ow next issue we will inclhulde & routine that will prrint lavger: nunbers.
a section which explains conditional jumps and the FLAG (F) register. In the
meantime you could try to adapt the program above., so that it would calculate
both the sum of two numbers and also the result when one number is subtracted
from the other. The above routines contain all the information you need to be
able write such a program.

ﬁ

BASIC Poker

Next to all the routines contained in this issue (in the leftmcst column)
there are rows of numbers. These numbers should not be typed into an ASSEMELER
but are intended for use by those who do not possess one. These numbers can be
typed into the 'BASIC Poker' which was printed 1n both Issues One and Two. The
'BASIC Poker' is included on every 1ssue's program cassette and also includes
instructions on how fo use 1t correctly.

_ Y,

36

ADVANCED BASIC - STRINGS BASIC TUTORIAL

Advanced Basic
— STIRIINGS =

In this issue we are going to look at the various text handling commards,
which can perform quite varied and complicated things. The simplest of these
allows you to enter a word (or letter) and check to see whether one particular
action should be done next or not. Then you can write a routine which lets the
user select which action. out of a number of possibilities should be done. As
well as these. there are many other useful ideas which can be inserted into a
larger program.

The easiest cne is the simple check to see if a particular key is pressed.
This involves the command INKEY$ and the routine bhelow will check to see if any
key 1s pressed :—

1@ PRINT "Press any key to continue"
20 a$=INKEY$: IF a$="" THEN GOTO 2@
3o END

3

If a key is pressed. then INKEY$ returns the key's value which is then stored
in a$ (this iz then checked against an empty string and, 1f it is rnot equal.
allows the program to continue). If we wished to check to see ii-a particular
key was pressed we would just have to modify 30 to read :—

ZQ IF as="Y" THEN END ELSE GOTO 20
This now checks to see if the Y key is pressed. Another way of doing this is :—

20 a$=INKEY$:IF asd<>"Y" THEN GOTO 20
3@ END

If the user entered 'y’ instead of 'Y'. the computer would not accept this and
procead as if another letter had been pressed. Une way round this is :-—

PRINT "Fress 'Y’ to contirnue"
20 a$=UPPERS$ (INKEYS$) : IF as<{>"Y" THEN GOTO 20
30 END

What this does is to convert whatever kevy is pressed into i1ts capital value and
then store this in a$ before carrying on with the program in the same way as i
explained above. The opposite of UPPER$ is LUWER$ and has a simllar use.

0]

37

ADVANCED BASIC - STRINGS BASIC TUTORIAL

More often than not, you will want the user to make a choice from a number
of different options and then execute the correct instructions. Shown below is
a simple routine that will do just this.

12 PRINT "1. Say Hello"

20 PRINT "2. Open book"

3@ PRINT "3. Read book"

40 PRINT "4. Shut book"

50 PRINT "53. Say Goodbye"

60 PRINT "Please enter vour choice"
7D knows="12345"

80 where=0

Q0 a$=INKEYs$: IF as="" THEN S0

100 where=INSTR (knows, a$)

119 IF where=@ ther 20

120 ON where GOSUB 1000, 2000, 3000 , 4000 , SO00
130 END

Lines 10 — 60 show you the options available and prompt vou to enter a number
from 1 to 5. Line 70 stores the numbers/letters that the program will accept in
know$. Line 80 sets a variable. where. to 9 and Line 9@ inputs a character.
Line 1@@ is slightly different — what it does it to see whether the character
in a$ (the one entered) is in the string. know$. If isn't then 'where' holds ¢
and line 119 checks for this and then inputs another letter. If it is. 'where'
holds the position that a$ occurs in know$. This may sound a bit confusing but
1f you look at the example belcow. everything should be clearer.

If the number '2' was entered then ag="2"

Then the computer checks to see if '2' is held in knowd (know$="12345")
It is, so it counts each letter in knows until it finds the character '2°
It finds that 'Z' is the second number in the string and so where=2

Theretfore. in line 120 it GOSUBEs to the second number in the sequence, which
happens to be line 2000.

The real subroutines at lines 1000, 2060,3000.4600 and 5080 have not been in—
cluded in the above program as it is only an example listing. However in a real
program these lines would contain the actual routines which perform the various
options offered. The above program relies on the 'INSTR' command to work and is
very easy to change so that 1t will select more or less functions — to do this.
all you have to do 1s change line 70 to include other letters which the prog-am
15 to accept and line 120 to send the program to its different subroutines.

38

ADVANCED BASIC - STRINGS BASIC TUTORIAL

So far we have only looked at INKEY$, UPPER$, LOWER$ and INSTR but there are
several other commands which are commonly used involving strings — such as :—
1FEFT$. RIGHT$. MID% and LEN. All of these are fairly straightforward and simple
to use.

LEFT$ — This often takes the form b$=LEFT$(a%$.l) and this command takes the
first letter in the string a$ and stores it in b$. If the number in brackets is
changed to 3. then the first three letters of a% will be stored in b$.

RIGHT$ — This has the same syntax as LEFT$. eg. b$=RIGHT$(a%.2) — This takes
the last two letters of the string, a$. and stores them 1n bs.

MID$ — This is slightly more complicated but takes a similar form to hoth of
the commands above. eg. h$=MIDF(a$.3.2) — This ftakes the next two letters of ad
starting from the third letter and stores this in h$. If the second number 1is
omitted then the string extends to the end of as.

LEN — This is different from the others in that it retwrns the length of the
string. eg b=LEN(a%$} — This will store the length of a$ in 'b'.

The short program below illustrates the principles of these commands :—

1@ as="PRINT-OUT"

20 b$=LEFT$H(a$,2) :PRINT b%
20 cH=RIGHTS (a$,3) :FPRINT c%
49 de=MID$(a$,3,4) :PRINT d%
S50 e=LEN(a%$) :FRINT e

The program below does not contain any more new commands but uses the cnes
which we have already looked at to obtain a rather more complicated result. The
program asks vou for a name. such as Joe Bloggs. and then automatically abhrev—
iates 1t to 'J. Bloggs' which 1s then printed onto the screen. It does not mat—-
ter how many names are entered (10 will accept Jdoe Harold Bloggs) and stili ab
breviate 1t correctly. Try and read through the program to discover how i1t act-

ually works ard

10 REM Name abbreviator you may well be
20 MODE 2 rewarded with a
3@ FRINT "Please enter the name to be abbreviated :-" few interesting
49 INPUT ">>> ", names 1deas of use.

2@ name$=UPPERS (name$)

&0 a=INSTR (names, " ")

7@ IF a=@ THEN PRINT name$:END
80 b$=MID% (name$, l.a-1)

Q0 in$=LEFT$ (b%, 1)

100 in$=ins+"., "

119 PRINT in$;

120 rame$=MID$ (names$, at 1)

130 GOTO 4@

39

SPECIAL OFFERS INFORMATION

OFFERS

Please make all cheques/postal
orders payable to 'Print-Out’'.

:: i
Orders will be dealt with on a

first-come first-served basis.

although program cassettes and

back issues can be guaranteed. l///’
Please do NOT send cash unless \

1t cannot be avoided.
Please send your crders to :— PRINT-OUT, Special Offers. 8 Maze Green Road.
Bishop's Stortford, Hertfordshire CM23 2PJ.

PROGRAM CASSETTES

If you wish to receive a tape containing all the programs in this issue and a
booklet that explains how they and others work., please send either :—
a) A blank tape (15 minutes) + 50p (p+p)
or Db) £1.00 (which includes tape and p+p)
The program cassettes for Issues One and Two are still available at the same
price but also see below for a special offer on back issues and program tapes.

BACK ISSUES

We have a limited number of copies of Issues One and Two still available and
further copies of Issue Three can be ordered. The price is £1.10 and this in-
cludes postage and packing (alternatively send 70p and an A4 SAE with a 28p
stamp). Also see below for a special offer on back issues and program tapes.

188Uk 4

If vou wish to order Issue Four in advance please send a cheque for £1.10 (or
70p and an A4 SAE with a 28p stamp) to the usual address and it will be sent to
you as soon as it published.

40

SMALL ADS. INFORMATION

SPECIAL OFFER

This 1ssue's special offer will especially appeal to those of vou who have only
recently started reading Print-Cut. If you order a copy of any back issue of
Print-Out and a program cassette the cost i1s only £1.75 includirng postage and
packing and also the cost of the tape. Alternatively vou can send £1.25 plus a
tape of at least fifteen minutes for a back issue and program cassette.

PROGRAM DISCS

As a trial for this month., we will also be supplying the programs on disc. The
cost for this 1s 50p and a blank disc per issue. Unfortunately we cannot offer
a price inclusive of the disc at present. If encugh people order using this ser—
vice 1t may become a regular offer.

SMALLADS

FOR SALE :— LORDS OF MAGIC adventure game featuring over 70 detailed text loc—
ations. Includes 'Talk' command and ‘Cast' for spells. Send cheque/
postal order for £3.95 {Amstrad CPC disk) or SAE for details to :—

T. KINGSMILL, SOFTWARE, 202 Park Street Lane. Park Street,
St. Albans. Hertfordshire ALZ2 ZRO.

Remember you can place an advertisement of upto 40 words (including name
and address) in this section of the magazine. free of charge. For larger
advertisements please write for detailis and prices.

WRITING FOR PRINT-0UT

If you would like to write for Print-Out in any way. then please
get in touch with us at our usual address :— FRINT-OUT. 8 Maze Green F4.
Bishop's Stortford, Hertfordshire CM23 ZPJ. Any articles, progqrams, etc.
that you would like to be considered for publication in Issue Four should
reach us by no later than the 20th March 1990. Thank vou.

41

	Page 01
	Page 02
	Page 03
	Page 04
	Page 05
	Page 06
	Page 07
	Page 08
	Page 09
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41

