The Knife
x5 _by Aries o J

THE KNIFE

Welcome!

The Knife is a full-feature disc sector editor and file patcher,
allowing you to alter individual bytes anywhere on a disc. Unlike
other disc editors about though, The Knife comes as two different
programs for two different needs.

If you want to patch an individual file, or if you want to learn
about the CP/M disc structure and how files are stored, we
recommend you use the first program, called simply Knife.

For those of you who want to perform more radical alterations, or
want to do something quickly, the more powerful but not quite so
friendly Knife2 program is likely to be more useful.

Although both programs perform approximately the same function,
the two are different enough in approach to be explained in
separate sections of the manual. The first section is devoted to
The Knife, and also explains CP/M disc and directory structures
and looks at the parts of this structure specific to the Amstrad
implementation. There is also a short example to clarify the
concepts, which shows you how to 'un-erase' a file which you've
just deleted.

The final part of this manual explains the second program,
called Knife2. The tutorial aspects are not covered in such
detail in this section, as it is presumed that the user of Knife?2
is more familiar with discs. If not, the information contained in
part 1 is perfectly applicable to Knife2 as well.

Copyright Notices.

Programs:
The Knife Copyright Aries Computer Systems 1985

Documentation amnd Design:
The Knife Copyright HiSoft 1985

All Rights Reserved. No part of this publication may be
reproduced or transmitted in any form or by any means, including
photocopying and recording, without the written permission of the
copyright holder. Such written permission must also be obtained
before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to The Knife
and the associated documentation to copy, by any means
whatsoever, any part of The Knife for any reason other than for
the purposes of making a security back-up copy of the object code
for your own personal use.

Please buy, don't steal.

The Knife

Running The Programs

Both The Knife and Knife2 are supplied on the same disc, but
Digital Research / Amstrad licensing agreements do not allow us
to provide the CP/M system as well. This means that it is aot
possible to 'boot' or 'warm boot' CP/M from the disc. Use of the
SYSGEN utility, which is provided with the Amstrad machine (or
DDI-1), will put a copy of the system tracks onto the disc so
that it is possible to boot from it. Please consult the Amstrad
or Digital Research documentation for details of how to do this.

It is important to note that neither The Knife or Knife2 may be
run from the CP/M Plus operating system. This is because the two
operating systems handle discs in slightly different ways, and
because Amstrad 'firmware' calls may not be made from CP/M Plus.
If you have a CPC6128 or a PCW8256, please boot up CP/M 2.2
before using either version of the Knife.

Getting Started

To start the Knife first make sure that CP/M 2.2 is running then
insert the master disc into the floppy disc drive and type after
the prompt: ’

Ad>knife [ENTER]

The Knife will load in and display its title screen. Press any
key (eg {ENTER)]) or just wait a few seconds to move on to the
first screen. There is a list of options at the top of the screen

(often called a menu):
VIEWDISC FILE: EXIT

The VIEWDISC option is highlighted in reverse video. To move to
the next option press [TAB]. To select the current option just
press [ENTER].

Viewing a Disc

Select the VIEWDISC option by pressing [ENTER]. The Knife then
suggests that the disc will be in drive A. Just press [ENTER] to
accept this or else type B [ENTER] if you have two drives and
wdant to examine a disc in the second drive.

Now there are some more lines of menu options:
DRIVE:A TRACK:000 SECTOR:00

FORWARD BACKWARD PRINT CHANGE REWRITE

SEARCH

and down below are the contents of the first CP/M record.

The Knife

The FORWARD option is highlighted and you can step through each
record on the disc by repeatedly pressing [ENTER]. You can go
back again by using the BACKWARD option (use {[TAB] to step round
the options. To examine a particular area of the disc, select the
TRACK option and type in the track and CP/M sector (also known as
a record) number that you require. (Tracks go from 0 to 39 and
sectors from O to 35).

The PRINT option lets you make a printed copy of a record.

To alter the contents of a sector, select the CHANGE option, make
the changes, and them select the REWRITE option. Nothing is
written to the disc until you select REWRITE, so you can change
your mind at any time before this. After you select CHANGE you
can type in the new data that you waunt in hex using [TAB] to move
to the next byte. Move down a line with {CURSOR-DOWN] and you
can type in character strings., When you finish making changes,
press [ENTER} to get back to the menu.

SEARCH lets you find particular patterns onm the disc -~ such as a
text string. Select it and you can then enter the pattern that
you are looking for. Before doing so you can enter a 'search
mask', which allows some of the bits in each byte to be ignored
when looking for a match (eg a search mask of #DF will match
regardless of whether letters are in upper case or lower case).
Type in the pattern in hex using [TAB] to enter each byte and a
dot '.' after the last byte. Alternatively, you can press
[CURSOR-DOWN] and then type the pattern as a string of characters
- press [CURSOR-DOWN] again to enter some bytes in hex and at the
end before typing the dot '.'. The Knife will then start
searching for your pattern on the disc, going from sector to
sector. You can interrupt the search by pressing any key.

You can return to the top-level menu by using the EXIT option.

Looking at a File

This works in a very similar way to VIEWDISC. Select the FILE
option from the top-level menu. An opportunity to select a
different user area is given first -this can be defaulted to the
normal user 0 by pressing [ENTER]. The records in the file are
presented in sequence, and you can use the options described
above to examine and alter the contents of the file.

If you intend to perform extensive editing of files, we recommend
our Devpac80 package which includes ED80 and MONS8O. ED8O
provides comprehensive Wordstar-compatible text editing. MONS8O
gives extensive capabilities for editing binary program or data
files.

The CP/M Disc Structure

Now that you have your copy of The Knife, you can begin to hack
away at discs to your heart's content. However, for the progran
to be really useful, a full understanding of the way CP/M
organises files on the disc is most importamt. Every disc
formatted on a CP/M system has a similar structure, and the
Amstrad computers' disc system is no exception., Once certain
basic disc 'parameters' have been discovered, the organisation of
the disc can be relied upon to be thoroughly predicatable.

Before we look at how we can determine and use these parameters,
we must understand the concepts involved in floppy disc
technology as a whole. This means we must know what is meant by
'sectors' and 'tracks'.

Sectors amd tracks

A floppy disc is essentially a piece of plastic covered in a
magnetic film which is very similar to that found on cassette and
video tapes. A tape system has the disadvantage that, in order to
read or write a particular piece of data, the length of tape
preceding the required area has to be traversed by the read/write
head before the data can be acquired. Disc drives get over this
problem by moving the head rather than the magnetic film. The
disc itself is spinning at a very high speed, and the head is
able to move along a radius of the disc, covering any given
annulus at any given time, Obviously, a motor is required to move
the head across the disc's surface.

We can control motors extremely precisely if we allow it to move
in pre-defined steps, so it follows that if each step corresponds
to a part of the disc which contains (or is to contain) data, the
data can be recorded and retrieved with great speed and
considerable accuracy. To facilitate this process, the data is
stored in a given number of circular 'tracks' on the disc. The
number of tracks per disc is fixed at the time of manufacture;
the two most common standards are to have 40 tracks or 80 tracks.
In the case of a 40-track disc, such as used in the Amstrad, this
means that the entire working area of the disc is divided into
forty annular regions, to each of which the read/write head may
be moved.

The amount of data which may be held in a track is often very
substantial, and as a result most machines are unable to handle
it all in one go. To solve this problem each track is divided up
into divisions called sectors. The number of sectors within a
track is a function of the system's hardware and software, and is
one of the disc parameters we mentioned earlier. Likewise, the
amount of data which can be held in a sector is determined by
another parameter. This is known as the 'sector size'; common
sector sizes are 128, 256, 512 or 1024 bytes - the Amstrad discs

have 512 byte sectors.

The CP/M Disc Structure

The Amstrad's discs are formatted to have 9 sectors of 512 byteh
each per track, and as there are forty tracks, it follows that a
side of a disc may hold up to 40 * (9 * 512) bytes which works
out as 184320 bytes, or 180K.

When a disc is formatted, it sets up the sectors and marks the
sectors within a track with a number. The first sector in a track
is usuvally nuambered 0 or 1, but Amstrad has chosen to use 65
(#41) for most of its discs. There are a couple of other formats
which use different start sector numbers, but we'll leave the
examination of those until later.

With our newly-gained information on tracks and sectors, we can
see that it is possible to refer to a given sector's data by its
track number and by its sector number. Track numbers always start
at 0, so the first sector on a normal Amstrad disc is

Track O Sector 65
and the last sector on such a disc is
Track 39 Sector 73

The ability to refer uniquely to a sector is surprisingly useful,
as we are about to find out, but first a warmning:

(BIGGER POINT SIZE)

The CP/M system believes that sectors are alvays 128 bytes long.
These mythical sectors are also knovn as 'records', or 'logical
sectors’', or 'CP/M sectors’'. Throughout the rest of this guide
we call them ‘records’. When the Knife program displays a sector
number it is talking about a 'CP/M sector' or 'record'. The real
‘physical sectors' on the disc are 512 bytes and we refer to them
here as 'sectors'. The Knife program makes no reference to
'physical sectors'. The Knife2 program, however, does exactly the
opposite and refers always to physical 512-byte sectors rather
than CP/M's logical sectors. It does this by 'grouping' four
consecutive logical sectors.

(OK. BACK TO NORMAL POINT SIZE)

CP/M Discs

The CP/M operating system deals with data in groups of 128 bytes
regardless of the physical configuration of the sectors. The 128-
byte groups are known as 'records' in CP/M terminology, and
happen to be the smallest amount of data which the operating
system acts on with reference to discs. This means that every
CP/M file om a CP/M disc is an exact multiple of 128 bytes in
length, Now read again the bold priat warning above!

The next step up in data handling is the 'block', which is a
group of records belonging to the same file. A block is usually
one of 1024, 2048 or 4096 bytes long, which means that there will
be either 8, 16 or 32 records per block. On the Amstrad disc
system, there are eight records (or 1024 bytes) per block, which

The CP/M Disc Structure

means that a block occupies two physical sectors. The sectors
will be contiguous in numbering terms, and as the first block
occupies sectors 65 and 66 of track 2 the second block occupies
sectors 67 and 68 of the same track.

Files always occupy a whole number of blocks, even if the
physical length of a file would seem to dicate otherwise. This
means that a file which is five records long will occupy exactly
the same amount of disc space as one which is seven records long.
It is clear that the smaller the block size, the more efficient
the use of disc space, but at the same time a small block size
reduces “the speed with which a file may be read or written. A
compromise is arrived at, and as floppy discs are now rather
cheap, a large block size is often adopted.

The directory of a CP/M disc always occupies block 0, and
possibly other consecutive blocks as well. The directory is the
place in which the system keeps a record of all the files on the
disc and where they can be found. Once we've found the first
directory block, the rest is easy, but how do we calculate the
location of the directory?

This is where the disc parameters are required. The information
we need is held on page 2.8 of the Amsoft DDI-1 firmware manual
(SOFT 158A). This is what it tells us:

System format (this is the one we're interested in)

Single sided

312 byte physical sector size

40 tracks numbered U to 39

1lU24 byte CP/M block size

64 directory entries

9 sectors per track numbered #41 to #49 (this is 65 to 73 in decimal)
2 reserved tracks

Some of this information is not new to us, but the part that gets
us to the directory is the '2 reserved tracks' entry. A CP/M
system disc always has some reserved tracks, to hold the code
required to boot the system into the machine. These tracks also
generally hold the CCP (Console Command Processor) and the BDOS
(Basic Disc Operating System). Reserved tracks always start from
the beginning of the disc, so if the format says '2 reserved
tracks', it means that tracks 0 and 1 are used by the system for
its own purposes. The directory follows the reserved tracks, so
the first directory record must be

Track 2 Record 0

If you examine this record, you'll see that we're right! What do
you notice about the organisation of this area? Let's examine the
first few bytes of a typical directory record to find out:

The CP/M Disc Structure

0000 00 50 49 50 20 20 20 20 20 43 4F 4D 00 00 00 3A .PIP CoM...:
0010 02 03 04 05 06 07 08 09 00 00 Q0 00 00 00 00 00ceoceveune
0020 ES 43 4F 55 4E 54 20 20 20 47 45 4E 00 00 00 14 .COUNT GEN....
0030 0A OB OC 00 00 00 00 00 00 00 00 00 00 00 00 00ccoe0nven.

It's obvious from this that each directory entry occupies 32
bytes, which enables us to gain yet more information about the
disc structure. You'll remember that the system's disc parameters
mentioned that there are 64 directory entries. If each directory
entry is 32 bytes long, the entire amount of disc space devoted
to the directory must be 32 * 64 bytes, which is 2048 bytes or
2 blocks. This means in turn that the directory on a system disc
occupies records U-7 on track 2.

So now we know where the directory starts and how long it is. As
it occupies two blocks on an Amstrad disc, it follows that the
first block free for data is block 2. Let's take a look at an
individual directory entry and see what information we can gain
from this.

0000 00 50 49 50 20 20 20 20 20 43 4F 4D 00 00 00 3A .PIP coM...:
0010 02 03 04 05 06 07 08 09 00 00 00 00 00 00 00 00 e

The very first byte of the entry, which is '00' here, tells us
the status of the file. If this byte is 0, as above, it means
that the file exists. If it is #E5 (229), the file has been
deleted. A deleted file's directory entry can be overwritten by
the next file to be created on the disc, and all files whose
first directory byte is #E5 will not be found in an open call.

As well as 0 or #E5, the first byte can also be any number from 1
to 15. This means that the file exists, but in a different 'user
area’'. Normally when using CP/M we are in user area 0 but we can
give the built-in USER command to move to another user area. The
main use of this is on large (hard) discs where directories can
get too large to comprehend unless they are split into different
areas. You can also hide files by putting them into a different
user area.

The next eight bytes comprise the file name. The characters are
always stored by the system as upper case, and the field is
right-filled with spaces (CHRS$(32)). The three bytes following
this comprise the file extension, which is again in upper case
and right-filled with spaces. If you make any alterations to the
directory entry, remember to use only valid characters in the
filename and extension fields, and use only upper case letters;
as otherwise you will not be able to access the file!

The '.' dot which we use to separate filenames and extensions, as
in

GEN80O MYFILE.GEN

are not stored in the directory; there is no need as the name and
extension fields are always eight and three bytes long

The CP/M Disc Structure

respectively. To simplify the next part of the discussion, we're
going to ignore something called 'extents' until a little later.

The sixteenth byte of a directory entry, which is $3A in our
example above, tells us how many records there are in the file.
We can see that PIP.COM has $3A records, which is 58 in decimal.
As there are eight records per block, it follows that PIP.COM
will occupy eight blocks, but the first two records only in the
final block form part of the file. So far so good, but how do we
know where to start looking for PIP.COM? The answer lies in the
next few bytes.

These bytes, from byte 17 in a directory entry onwards, are the
numbers of the blocks occupied by the file, in the order in which
they were written. From this, we can see that PIP.COM occupies
blocks 2, 3, 4, 5, 6, 7, 8 and 9. We also know that all eight
records in blocks 2 to 8 are part of PIP, but only the first two
records in block 9.

Block O starts at track 2 record 0, block 1 at track 2 record 8,
and block 2 at track 2 record 16 which is the first record
containing part of PIP. It follows through sequentially like
this, so it's dead easy to find every single record of a file.

There are times when a file will not occupy consecutive blocks,
as other, smaller, files may have been deleted and the space re-
used by the new file. Nevertheless, it is not at all difficult to
translate block numbers from a directory entry into physical
sectors on a disc, and thus locate every record of a file. There
is one problem, though...

Extents

As the last sixteen bytes of a directory entry are used to hold
the block numbers occupied by the file, it follows that each
directory entry may reference only 16 blocks, which in the case
of the Amstrad means 16K. This is a bit of a limitation, as we're
sure to waunt to read and write files which are longer than 16K
from time to time. CP/M gets over this by introducing the concept
of an 'extent', each of which occupies one directory entry and
can therefore be no longer than 16K (on the Amstrad).

If a file is too long to be held in one extent, the CP/M BDOS
opens another extemnt for it, creating a directory entry identical
to the previous one except that the new entry reflects only the
number of records in this extent, and the block numbers refer to
this extent only. If the file needs yet another extent, the
process continues, and so on., Each directory eatry, although
referring to a different part of the file, has the same filename
entry, so how do we tell which directory entry refers to which
extent?

You guessed it! One of the spare directory entry bytes is used to
tell us which exteant this entry refers to. The byte in question
is byte 13, which is the first byte following the last character

The CP/M Disc Structure

of the filename extension. The first extent of a file has this
byte set to 0, the second to 1 and so on. For the same reason
that individual parts of a file may not necessarily be saved on
contiguous blocks, so extents may not necessarily appear im order
in the directory. It all depends on where the free space. is.

If, when you examine a file's directory entry on am Amstrad CP/M
or Amsdos disc, you find that it doesn't refer to the first
extent, keep on looking. Likewise, when you read an entry and
find that there are 128 (#80) records in that file, check to see
if there are any more extents recorded in the directory. There
may not be, as there is nothing to stop a file being an exact
multiple of 16K bytes long, but you must check to make sure.

The final pieces of information held in a directory entry are
cleverly hidden away in the 3-byte filenmame extension field.
These are normally capital letters or other ASCII characters,
which means they are below #80 (128), which in turn meaans that
the very top bit, bit 7, is zero. As CP/M knows this, it takes
advantage of the fact and uses this bit to store vital pieces of
information. The top bit of the first character of the extension
tells the system whether the file is set to R/W (read/write) or
R/O0 (read only) access. If the bit is clear (zero), as it is
normally, the file is considered to be a read/write file, while
if it is set (1), the file is read-oaly. The top bit of the
second character of the extension is used to signify whether the
file is a directory (DIR) file or a system (SYS) file. A 'l'
corresponds to SYS and a '0' to DIR., A file marked as SYS will
not be listed in directory listings.

Other Amstrad Disc Formats

Although the principles we have discussed apply to all discs
formatted under a CP/M system, it must be borme in mind that
different systems will have different disc parameters; there may
be thirty two records to a block, or a sector size of 256 bytes,
maybe even only eight sectors per track. Some CP/M systems may
seem at first glance to differ wildly to our description, but all
they are doing is expanding upon the principles. Nevertheless, by
getting hold of this basic information, the rest is made simple.

Amstrad itself allows for two other disc formats apart from the
'system format' discussed above. There is the 'Data Only format’,
which is identical in every respect to the system format except
that there are no reserved tracks, and the sectors in a track are
numbered from 193 to 2U1. The other format, which is used very
infrequently, is the 'IBM format'. This is designed to be
compatible with CP/M-86 systems used on the IBM PC, and has only
eight sectors per track, one reserved track and sectors numbered
from 1 to 8.

An Example - How to Unerase a File

Now that we know how to use the Knife, and also what the

The CP/M Disc Structure

information on a disc means, we are ready to try aan example,. We
are goling to recover a deleted file: perhaps by over-zealous use
of the ERA command. Note that you caannot recover files after
other data has been written on the disc - you must do it
straightaway.

The first step is to find the directory entry or entries for the
file, so select VIEWDISC, and goto TRACK 2 SECTOR 0. Now SEARCH
for the name of your file, using a MASK of hex DF. Suppose the
name is "count.gen" so we set up the search string by typing:

[CURSOR-DOWN] C O U N T [SPACE] [SPACE] [SPACE] G E N [CURSOR-DOWN]
(don't forget the dot at the end)

The Knife now searches for the directory entry and hopefully
finds something like the one we showed you earlier. We can see
that the first byte of the directory entry (just before the
filename) is E5. All we need to do is change this to be a zero
and our file will be magically restored. Select the CHANGE
option, use [CURSOR-DOWN)] to move to the appropriate byte, type
00 to change it, then [ENTER] to return to the menu, and select
REWRITE. The file is restored! For large files you must remember
to change the directory entry for each extent in the file.

10

KNIFE2

Enife2 is an alternative disc editor to the Knife, offering
different facilities and approaching the idea in a completely
different way. We think that the two prograas complement each
other, which is why we supply them both.

One of the most imﬁortant differences between the two Knives is
that this version (referred to always as Kmnifel2) refers always to
physical sectors (512 bytes on Amstrad discs) rather than CP/M's

logical sectors.

Knife2 is loaded by typing its name at the CP/M prompt:

Ad>knife2

Due to the major differences in BIOS (Basic Input/Qutput System)
operation between CP/M 2.2 and CP/M Plus, Knife2 is capable of
running successfully only in a CP/M 2.2 environment. For CPC464
and CPC664 owners, this makes no difference, but owners of later
machines such as the CPC6128 will need to boot up CP/M 2.2 rather
than CP/M Plus. Don't worry though - Knife2 can still be used to
edit CP/M Plus discs. If you try to execute Knife2 while running
CP/M Plus, the beeper is sounded and this message appears:

This program must be run under CP/M 2.2
You are then returned to CP/M.

Once the program has loaded, the screen is cleared and you will
be asked which drive the disc to be edited is in. This may be
either 'A' or 'B' on current Amstrad systems. The program may
also be terminated at this poiant by pressing [RETURN] rather
than 'A' or 'B'. If the drive specified does not contain a disc,
does not exist or contains an unrecognised disc format (very
unlikely!), a message is printed and you are asked to specify the
drive once again.

When a disc has successfully been selected, the first 256 bytes
of the first sector on the first track of the disc are displayed,

something like this:

DISC SECTOR EDITOR V1.1 (C) 1985 HiSoft
Drive: A Track: 00 Sector: 01

0UU0 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
0010 HH HH HHE HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
0020 dH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
UU30 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
V040 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
0050 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
OU60 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
0070 ©H HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
Ou8U HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
0090 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
VUAO HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
UUBO HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA

11

KNIFE2

00C0O HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
00D0 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
OUEO0 HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
QO0F0O HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH HH AAAAAAAAAAAAAAAA
First Half

There are sixteen bytes to each line, and the first four digits
on each line represent the hexadecimal offset from the start of
the sector of the first byte in each line. Following this offset
are the hexadecimal representations of the sixteen bytes and then
the ASCII (character) representations of each of the bytes. Note
that the ASCII representations are coerced into ‘'printable’
characters by first bitwise-ANDing each byte with 7F (127
decimal) and then checking to see if the result forms a coantrol
code. If it does then it is replaced in these columns with a full
stop. A control character is one with a code value of less than
20 (32 decimal) or equal to 7F (127 decimal).

The reason that it says 'First Half' at the bottom is that each
sector on an Amstrad disc is 512 bytes long. As it is difficult
to get all these bytes on the screen in one go, we show only a
half at a time. Switching to the other half is simple, as we
shall see,

When this display has been drawn, a cursor will appear over the
first digit of the first byte. At this stage you may enter
commands to be acted upon by Knife2, or alter any of the bytes
displayed by typing in hexadecimal numbers.

Altering Bytes

When the cursor is over the hexadecimal representations of the
bytes, new values may be entered simply by typing them in. Any
valid hexadecimal digit will be entered into the current location
and the cursor advanced one posit%og. Valﬁg,hexadecimal digits
are '0' to '9', TA' to 'F! and a to .

When the cursor is over the ASCII representations of the bytes,
new values may be entered by typing the required character. As a
few of the keys need to be used to issue commands to the program,
not all ASCII values may be typed in directly. In these cases,
move the cursor to the hexadecimal representation of the byte and
eater the hexadecimal value of the character.

In either case, the cursor may be moved around the hexadecimal or
ASCII representations with the four cursor keys (those with
arrows on). You may switch between the hexadecimal and ASCII
representations at any time by pressing the TAB key or CONTROL-I.

Remember that no alterations you make are saved back to disc
until you issue a 'Write sector' command (see below), so it is
perfectly permissable for you to play around with the system
until you get used to it.

12

KNIFEZ

Commands

Knifel2 responds to a wide variety of commands, many of which are
accessed by pressing the [CONTROL] key in conjunction with
another. This means that the two keys must be pressed
simultaneously, but it doesn't matter if the other key is upper-
or lower-case.

SHIFT-Right arrow GOTO next sector

Pressing this key combination advances to the next sector on the
disc, updating the display as appropriate. If the current sector
is the last on a track, then the first sector of the next track
is read. If the current sector is the last of the last track,
this command goes to the first sector on the first track.

SHIFI-Left arrow GOTO last sector

Pressing this key combination retreats to the previous sector on
the disc, updating the display as appropriate. If the current
sector is the first on a track, then the last sector of the
previous track is read. If the current sector is the first of the
first track, this command goes to the last sector on the last
track.

SHIFT-Down arrow GOTO next track

Pressing this key combination advances to the next track on the
disc, updating the display as appropriate. The current sector
number is not changed. If the current track is the last om the
disc, this command reads the first track on the disc.

SHIFT-Up arrow GOTO last track

Pressing this key combination retreats to the previous track on
the disc, updating the display as appropriate. The current sector
number is not changed. If the current track is the first om the
disc, this command reads the last track on the disc.

COPY Show other half

Pressing [COPY] re-draws the display using the other half of the
sector as its data. If the first half of the sector is being
displayed, then this key causes the second half to be displayed,
and if the second half is currently being displayed, this key
will cause the first half to be shown. Nothing else is affected.
TAB HEX/ASCII switch

This key moves the cursor between the hexadecimal representations
and the ASCII representations of the bytes being displayed. The

cursor’'s effective position within the data 1is not altered.

ESC Quit edit and leave

13

KNIFE2

Pressing [ESC] causes the curreat editing session to terminate,
returning you to the prompt asking which drive the disc to be
edited is in.

CONTROL-F Search for a string

This key produces a prompt at the bottom of the screen. Up to
eighty characters may be typed at this prompt, and the normal
CP/M editing keys may be used while it is being entered. When
eighty characters have been entered, or when you press [RETURN]
(whichever is the sooner), the program begins to search for the
string on the disc starting from the sector following the one
being displayed. If the string is found, the sector and track in
which it occurs become the current ones, and the display is
updated to reflect this. If the string cannmot be found, a message
is displayed. Pressing.a key at this point returns the display to
what it was prior to [CONTROL-F] being pressed. The search may be
aborted at any time by pressing any key. If this is done, the
sector which was being searched at the time the key was pressed
is made the current sector.

Notice that the string to be searched for must exist wholly
within a physical 512-byte sector for it to be found.

CONTROL-G Search for a byte sequence

This key produces a prompt at the bottom of the screen. Up to
eighty bytes (values between 0 and 255) may be typed at this
prompt, and the normal CP/M editing keys may be used while each
is being entered. Each byte must be separated by a press of the
[RETURN] key. The program expects each byte to be entered in
hexadecimal, but this may be over-ridden by preceding it with a
'#' character. When eighty byte values have been entered, or when
you press [RETURN] by itself (whichever is the sooner), the
program begins to search for the string of bytes on the disc
starting from the sector following the one being displayed. If
the string is found, the sector and track in which it occurs
become the current ones, and the display is updated to reflect
this. If the string cannot be found, a message is displayed.
Pressing a key at this point returns the display to what it was
prior to [CONTROL-F] being pressed. The search may be aborted at
any time by pressing any key. If this is done, the sector which
was being searched at the time the key was pressed is made the
current sector.

Notice that the sequence of bytes to be searched for must exist
wholly within a physical 512-byte sector for it to be found.

CONTROL-Q Write sector to givem location

This key allows you to write the sector being edited back to any
location on the disc. Unlike {CONTROL-W]}, which writes the sector
back always to its original location, this keypress asks you for
new track and sector numbers and thenm writes the 512-byte sector
to the disc at that location. If [RETURN] alome is pressed in

14

KNIFE2

response to either 'New sector number:' or 'New track number:';
the current value for that parameter is used. Inexperienced users
must be very careful with this command, as it is obviously easy
to entirely foul up the disc if the sector is writtem to an
undesired location.)

CONTROL-S Select new sgector

Pressing this key results in you being asked for a new sector
number to edit. If [RETURN] alone is pressed in response to this
prompt, the sector number is not altered. The sector number is
normally between 1 and 9. This cowmand allows you only to select
sectors within the current track.

CONTROL-T Select new track

Pressing this key results in you being asked for a new track
number to edit. If [RETURN] alone is pressed in response to this
prompt, the track number is not altered. The track number is
normally between 0 and 27 (0 and 39 in decimal). This command
does not alter the number of the number of the current sector
within the track.

CONTROL-W Write sector back

This command writes the 512 bytes being edited back to disc, at
the location they originated from.

Sectors And Tracks

CP/M 2.2 regards each disc as comprising of a number of 'logical
sectors', each of which is 128 bytes long. The Amstrad
implementation of CP/M has 36 of these logical sectors on each
track, and as each 'physical sector' on these discs is 512 bytes
long, it follows that there are four logical sectors to each
physical sector. From this, we can see that each disc must have
nine sectors on each track. When discs are formatted, the
physical sectors may be given odd numbers; for example, the
Amstrad CP/M 'System format' discs have sectors numbered from $41
to $49. To avoid all the confusion, we map the CP/M logical
sectors to each physical sector, but always treat the first
sector in each track as being sector one. It makes no difference
in practice, but it may help to remember that Amstrad sector
number $41 is Knife2 sector $01.

Track numbers are always between 0 and 27 (0 and 39 in decimal),
as all Amstrad discs are curreantly 40 tracks wide.

Knife2 is aware always how many sectors per track there are on a

disc, and although this is almost always nine, the Amstrad 'IBM
format discs' have only eight.

15

KNIFE2

Other Products

While The Knife and Knife2 allow you to alter individual bytes on
discs and examine the structure used by the operating system,
text files may be far more efficiently created and altered with a
full-screen editor. As part of the package provided with each of
our CP/M language products, HiSoft's screen editor ED80O is the
ideal to generate language source files, letters and progranm
documentation.

Our range of languages is well respected and extremely popular.
We have a full function Pascal compiler which follows the Jensen-
Wirth standard very closely and is especially tailored to writing
effective CP/M programs. Our new CP/M C compiler is one of the
cheapest available, yet offers all the facilities of the language
expected. These include structures, Unix-style stream I/0, byte-
addressable random~access files and full overlay support. This
compiler, which includes an extensive function library and the
ED80 screen editor, is destined to become the most popular CP/M C
compiler. A similar variant is available as an AMSDOS-only
compiler.

For those who want to access those aspects of CP/M and AMSDOS
available only through machine code, Devpac80 comprises a full
Z80 macro assembler, a front-panel debugger with full breakpoint
and single-step capability, and the full screen editor.

HISOPT

180 High Street North,
Dunstable, Beds LU6 1AT
(0582) 696421

16

HISOFT

180 High Street North,
Dunstable, Beds LU6 1AT
(0582) 696421

Printed by Jiffy Print Limited, Luton, Beds.

	pag 00
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17

