ARNOR C
COMPILER LINKER AND EDITOR

Amstrad PCW8256 PCW8512
CPC6128

Copyright (c) Arnor Ltd., 1987 Issue 1, 1987

AMSTRAD is a registered trademark of Amstrad ple.
CP/M and CP/M Plus are trademarks of Digital Research Inc.

All rights reserved. It is illegal to reproduce or transmit either this manual or the
accompanying computer program in any form without the written permission of
the copyright holder. Software piracy is theft.

The ARNOR C programs were developed using the MAXAM II assembler and
subsequently the ARNOR C compiler.

The editor was developed using the MAXAM II assembler and the ARNOR
BCPL compiler.

This manual was written using the PROTEXT word processor and printed from

camera-ready copy produced by PROTEXT on a KYOCERA F1010 laser
printer. We are indebted to David Foster for his help.

Arnor Litd., 118 Whitehorse Road, Croydon, CRO 2JF.

CONTENTS

INTRODUCTION INTRO
1. About Arnor C and C in general. 1-1
a). About the C language 1-1
b). The Arnor C compiler 11
c¢). Recommended books 12
2. The Manual. 2-1
a). About the manual 2-1
b). Page numbering 2-1
c). Version numbers, updates and README 2-2
3. Getting started. 31
a). Creating a 'Start of day’ disc 31
b;. Creating a compiler system disc 32
b). Configuration of the editor (APED) 3-2
COMPILER COMPILE
1. Introduction. 1-1
a). The programs and files involved with compiling a C program 1-1
b). Writing and compiling a simple C program. 12
2. Automated Compiling. 2-1
a;. Compiling and running programs from the editor 2-1
b). Using AC directly from CP/M 2-2
¢). Running compiled programs 23
3. The Run time system. 31
a;. Using the run time system interactively 31
b). Using the run time system passively 32
c). Supplied programs 33
d). Redirection from the command line 34

e). The screen driver 3-5

4. The Compiler.
a). What the compiler does
i) The pre-processor and lexical analysis pass
gii) The syntax checking and code generation pass
(i) The post processor pass
b). Using the compiler
c). Compiler options
5. The Linker.
a). What does the linker do?
b). Using the linker
c). Linker options
6. Linking machine code programs.
a). The header file
b). Function headers
c). Accessing passed parameters
d). Returning the function value
e). Calling a C function
7. The Joiner.
a). What the joiner does
b). Using the joiner
c). Joiner options
8. Summary of 'ways to compile’
a). Compile and run the program from within the editor
(i) Using ACCOM
(i) Using RUNC
b). Compile and run from the run time system
¢). Using RUNC from CP/M command mode
d). Running compiled programs
9. Library functions
10. The Arnor C implementation

[} [} 1
NN

QP ANAL G f

= e GO R N R ke BN

(PRI NIt LY g

O\OOOOIOOOOOOOOO

=
[

EDITOR

1. Introduction.
a). Edit mode commands
b). Command mode commands
¢). Key variations for the CPC6128
2. Edit Mode.
a). Editing 2-1
b). On screen help
c). Entering text
. Upper and lower case
e). Deleting and inserting
f). Swapping two characters
). Un-deleting all or part of a line
h). Insert and Overwrite mode
i). Moving the cursor more rapidly
j). Moving to a specified line or column number
k). Place markers
1). Scrolling
m). Splitting and joining lines
n). Tabs
3. Block commands.
a). Block commands
bg. Defining a block
c). Moving or copying a block
d). Deleting a block
e). Un-deleting a block
4. FIND and REPLACE,
a). Using FIND
b). Using REPLACE
5. Command mode.
a). Introduction
() Command HELP
(1) Command entry
i) Abbreviations
Eiv) The current filename

b). Editor commands
(i) Text file handling
if) Text manipulation
ii1) Printer control and printing

(v) Disc file manipulation
vi) File protection
vii) Phrase, Exec and Symbol commands
(viii) Miscellany
ix) External commands
gx) Programming commands
(xi) External programs
c). Large files
(i) Important notes on large file editing
(if) Are large files necessary?
d;. Two file editing
e). Special characters
f). Phrases and function keys
() Predefined tokens
il) Phrases and function key definitions
iii) Phrase commands
iv) Storing phrases for regular use
v) Using phrases and function keys
g). EXEC files
() Whatis an EXEC file?
(i) Creating an EXEC file
(i) Creating a phrase file
(ivy Commands related to EXEC files
(v) Using EXEC files
6. Configuration Utilities
a). DCOPY
b). CONFIG
i) Editing the options
it) The Set keys options
iif) Set editing options
iv) Set printing options
(v) Set general options
(vi) Set keys for PCW8256/8512
vii) Set keys for CPC6128
viii) Set printer driver options
(ix) Set name for AUTOEXEC file
?{) Save configuration
x1) Quit configuration program

iv) Drive selection, cataloguing and disc formatting

O\O\?\O\O\O\
NHBWWIN -

T] T30
AN

O\O\O\O\?\O\O\O\

RCRER-N-N

c). SETPRINT

@) Editing the options

if) Set printer options

i) Set serial printer options
iv) Set character translations
v) Load printer driver

vi) Save printer driver

vil) Quit SETPRINT

APPENDICES

Al. Summary of Compiler commands.
a).Redirections available with the compiler
b). Commands from the editor or CP/M
c). Run time system
i) Built in commands
il) Run time command programs
d). Compiler
e). Linker
f). Joiner
A2. Library functions.
A3. Compiler error messages.
Ad4. Summary of Editor commands.
a). Edit mode commands
b). Command mode commands
c). External utility program commands
A5, Key translations.
A6. System error messages.

INTRODUCTION

INTRO 1-1
1. INTRODUCTION

a). About the C language

C is undoubtedly the most popular language for commercial programming on
microcomputers today. The reasons for this success will soon become apparent.

C s a flexible and efficient language, capable of sufficiently good performance to
replace assembly language programming for many tasks. Another feature of the
C language is that it is remarkably well standardised, enabling programs to be
developed which may then be transferred to other types of computer with the
minimum of trouble.

b). The Arnor C compiler

The Arnor C compiler is a full implementation of the C standard as defined by
Kernighan and Ritchie in the book "The C programming Language".

The compiler produces compact, fast, intermediate code which runs under an
interpreter written in Z80 machine code. The intermediate code is called "Basic
Stack Code" and was designed specifically for running C on 8 bit computers.
Another advantage of running under the interpreter is that special screen
handling routines have been incorporated to allow fast writing to the screen, as
well as the use of 'windows'.

This manual describes in detail the operation of the various program modules
and everything that is specific to the Arnor C system.

The subject of learning to program in C is extremely large and the manual makes
no attempt to teach the language, a subject which is covered comprehensively by
many specialist books. Newcomers to C are advised to find a suitable tutorial
book.

INTRO 1-2

¢). Recommended books

There are dozens of books available, covering the subject of programming in C,
from introductory books to those covering specialist aspects of the language.
They are written in a variety of styles, from the "chatty’ to the reference book and
it is improbable that any one style of book would suit everyone.

The following list contains the names of books which have been found to provide
sound and useful information, but it is by no means comprehensive and it is
recommended that a visit to a good book shop is worthwhile, in order to select a
book with a style that suits you.

Bibliography.

"The C Programming Language" by Brian W. Kernighan and Dennis M. Ritchie
(Prentice-Hall, 1978).

This is the definitive guide to the language and, as a result, should be considered
an essential work of reference.

"C Programming Guide, 2nd Edition" by Jack Purdum (Que, 1985).

This book is easier reading than Kernighan and Ritchie and provides a clear,
comprehensive guide to C.

"C Self Study Guide" by Jack Purdum (Que, 1985).

Suitable for beginners, this book introduces C gradually, with a series of exercises
with supplied answers.

"Advanced C Primer ++" by Stephen Prata (Sams, 1986).

As the title suggests, this book deals with advanced programming in C. It is well
written with many real life examples.

INTRO 2-1

2. ABOUT THE MANUAL

The ARNOR C compiler, editor and associated programs are supplied on a
single 3" disc, together with a number of example source files. These, together
with this manual, provide all that is necessary to use the C compiler.

IMPORTANT NOTE: With the exception of the first time that the program is
used to create a working copy of the disc, the original disc should NEVER be
used. It must be retained as a back up and kept in a safe place.

If the original is used and damaged, perhaps by accidentally formatting it, or
even spilling a drink on it, you will not have any back up with which to create
another working copy.

a). About the manual

The manual is separated into a number of sections, each of which covers one
aspect of the Arnor C system. There is no need initially to read the whole
manual. In fact there would be far too much information to absorb at one go.
Ideally, the sections on 'Getting started’ and 'The Editor’ should be read
thoroughly, as well as the part of the manual concerned with the compiler.

Each section of the manual is split up into chapters, each covering an aspect of
the subject and all commands and library functions are covered in detail, with
examples where necessary.

Detailed appendices are provided at the back of the manual covering the
commands and other special features.

b). Page numbering

Each section of the manual is referred to by name and is further broken down
into chapters, which are numbered. Each chapter has its pages numbered,
starting at page 1.

Every page of the manual is numbered on the outside top corner of the page and
consists of a name and numbers. For example, this section of the manual is the
"Introduction’ and this is page 1 of chapter 2. The chapter is the first number and
the actual page in the chapter is the number following the hyphen.

INTRO 2-2

c¢). Version numbers, updates and README

Every Arnor program has a version number. In the case of the compiler and
linker, this is displayed when compilation or linking takes place. The run time
system displays the version number at the top of the screen when used in
interactive mode. The editor displays the version number on the command mode
banner line and the individual utility programs display them when they are used
(usually at the top of the screen). Any queries regarding the software should be
accompanied by the version number of the program concerned and your
program registration number must always be quoted.

Arnor have a policy of continual enhancement and improvement of software, and
from time to time new versions of Arnor C will be made available. Existing users
qualify for a low cost upgrade to any new version, but only if the registration card
has been returned to Arnor.

Inevitably the printed documentation cannot always keep up with the changes to
the software and so a text file, called '/README, is supplied on the disc, giving
any updates to the program or documentation. This file should be loaded into the
editor to be read and printed.

INTRO 3-1

3. GETTING STARTED

This chapter explains how to create a 'start of day’ disc from the supplied master
disc and should now be read and the instructions followed carefully.

WARNING: All the programs and files provided on the master disc are subject
to copyright laws and copies may be made for your own use on one machine only.
It is an offence to give, hire or sell copies of copyrighted material to other
parties.

Arnor C operates under CP/M Plus and is suitable for use on the Amstrad
PCW8256, PCW8512 and CPC6128 computers. It may be used with single drive
computers, but will take full advantage of two or more drives.

Before Arnor C is used, a working disc, containing copies of the relevant files
MUST be made. Make sure that the original disc is 'write protected’ before
starting to ¢reate a 'start of day’ disc. If there is any doubt about the use of the
write protection tab, full details are given in the Amstrad computer manual.

A 'start of day’ disc is one which, when created by following the instructions in
this chapter, will contain all the necessary files from the CP/M Plus System Disc
and the supplied program disc. It will enable the computer to load CP/M
automatically and be ready for use once the disc has been inserted at the start of
the day, without the need to insert other discs. CPC6128 users should note that
they will still have to type '} CPM' and press RETURN after switching on.

Two newly formatted discs will be required, one for the start of day disc, and one
for the compiler system.

a). Creating a 'Start of day’ disc

It is assumed that anyone who has bought this program and is intending to write
programs in C will already have a basic understanding of the operation of the
PCW or CPC computers, so precise details are not given of how to turn on the
computer and format discs. Details are given regarding the best way to copy and
arrange the various files onto the start of day discs.

INTRO 3-2

The start of day disc should contain the following files, which (except the first
two) can be found on side 1 of the supplied master disc.

CP/M system (EMS) file

SUBMIT.COM (from the CP/M system disc)
PROFILE.SUB

STARTUP

APED.COM

RUNC.COM

AC.COM

DCOPY.COM

+ HLP

* PTR

This disc should be marked 'C Start of Day disc'.

If using a PCW it is recommended that the above files, except the first 4, are
copied to the M drive. The file 'STARTUP’ contains commands to copy these
filess, and 'PROFILE.SUB’' should be changed to contain the line
'APED <STARTUP'.

b). Creating a compiler system disc

The second disc will contain all the compiler programs and associated files. This
is created simply by copying side 2 of the supplied master disc.

To copy this disc the supplied program 'DCOPY’ must be used (on the PCW
computer, the 'DISCKIT’' program will not work). To use this simply type
'DCOPY’ from the editor or CP/M and follow the instructions.

c). Configuration of the editor (APED)

Whilst the editor may now be used, it is important to carry out a procedure to
configure it, as soon as possible, to suit the precise arrangement of the computer
with which it is being used. It is not essential to do this now, but it should be done
before any serious work is carried out with the editor. Full details of the options
which require setting and also many other options which may be set, are given in
the chapter covering the utility programs in tll)xe editor part of the manual.

THE COMPILER

COMPILER 1-1
1. INTRODUCTION

The Arnor C compiler consists of a number of fully integrated programs which
include a powerful text editor, "APED’, a 'run time system program’, '/RUNC’
and a number of programs and files which comprise the compiler, linker and
other ancillary programs.

This part of the manual describes the use of the various programs concerned
with compiling a C program and a working knowledge of the editor (APED -
Arnor Program EDitor) is assumed. It is recommended that some time is spent

~ reading the section of the manual describing the editor and becoming acquainted
with it, before using the compiler.

Arnor C is very flexible in that it is possible to use the various programs in a
number of different ways and combinations.

This section starts with a description of the general principles and procedures
involved in writing a C program and then progresses to detailed descriptions of

the various parts of the Arnor C program and finally a description of the
different ways in which the programs may be used.

a). The programs and files involved with compiling a C program

The following is a list of the programs concerned with compiling and running a C
program, some or all of which will be required on all occasions.

RUNC.COM The C run time system program.

AC.COM A program to compile, link and run simple programs.

COMPILE.O The compiler program.:

LINK.O The linker program.

JOIN.O A program to join together two or more link files into one
larger link file.

Library files

STDLIB.L The full library

SMLIB.L Small library with most of the standard functions

MINLIB.L Minimum library containing only low level functions

MATHS.L Mathematical function library

COMPILER 1-2

Header files

STDIO.H The standard header file containing macros and structure
definitions

STDLIB.H Header file declaring functions in STDLIB.L

SMLIB.H Header file declaring functions in SMLIB.L

MINLIB.H Header file declaring functions in MINLIB.L

MATHS.H Header file declaring functions in MATHS.L, and some
constants

b). Writing and compiling a simple C program.

The process of writing a C program involves several stages:
1. Design the algorithms and data structures.

Plan the program.

Write the code for the program.

bl

Enter the source code using the editor and save it on disc with an
appropriate filename and the filename extension '.C'. For example,
'MYPROG.C'.

5. Compile the source code. This is the operation of translating the C program
into a link file. The link file will be saved with the filename extension ".L’.

6. Link the file, or files. This takes one or more link files (produced by the
compiler or assembler), and links them with the standard C library to
produce an executable C program, which will be saved with a filename
extension '.O".

7. Run the program to test it.
8. Go back to the editor and correct the program, if necessary.
9. Repeat steps 5 to 8 as many times as necessary.

We shall not concern ourselves with items 1 to 4 and it is assumed that the source
code has already been designed and entered with the editor.

The simplest way to carry out the above operations is directly from the editor and
a program called AC.COM is provided expressly for the purpose of 'automating’
the compilation of straightforward programs. This program is described in the
next chapter.

COMPILER 2-1

2. AUTOMATED COMPILING

The program AC.COM is supplied in order to provide a method of compiling
straightforward programs with the minimum of effort and can be used either
from within the editor, or from CP/M command mode. :

a). Compiling and running programs from the editor

The editor is used for entering and modifying C source code (See the section on
the editor for full details of how to use it) and with straightforward programs it is
most convenient to compile and run them from within the editor.

Note: If a program consists of a number of separately compiled parts which need
to be linked together, it is preferable to use a different method and details are
given in the chapter on the run time system.

In the simplest case, the source code for a program is entered using the editor
and saved on disc. It then needs to be compiled, linked and run. These three
operations can be performed as a single command, using the following command
from the editor's command mode:-

AC to compile the current text in memory
or:
AC <filename> to compile a named file

Note: In order for AC to function, it is important that the following files are
present on one of the drives:-

AC.COM the program
RUNC.COM the run time system
COMPILE.O the compiler
LINK.O the linker
STDLIB.L the standard library

In addition, any header files required by the program must also be present.

COMPILER 2-2

The program will then be compiled. During the course of compiling the source
code, the compiler displays a number of messages on the screen to indicate the
state of progress. It is possible to redirect some or all of these messages to a file
on disc, if required. Full details of the possible redirections are given in the
following chapter and an Appendix.

If an error occurs during compilation, control will be returned to the editor with
any text still in memory, so the error can be rapidly corrected and the process
repeated.

If compilation is successful, the program will automatically be linked with the
library, but if an error occurs, control will again be returned to the editor.

If both compilation and linking are successful, the program will automatically run
and, on completion of the program, control will return to the editor, as before.

With the AC command, the editor provides a convenient operating environment
for editing, compiling and testing programs. One of the advantages is that it is
possible to use any of the editor's commands to catalogue, copy, rename or
delete files, as and when required.

In the process of compilation, AC creates a number of files. Some of these files
are temporary and will automatically be deleted when no longer required, but
several will be retained. These will all have the same name as the original source
file, but with different filename extensions:-

filename.C is the original source file
filename.L is the intermediate link file
filename.O is the executable object file

b). Using AC directly from CP/M

AC may be used from CP/M in exactly the same way as from the editor, but if
compilation or linking fails, or when the execution of the program is completed,
control will return to CP/M command mode, rather than the editor. It is
obviously more convenient to use AC from within the editor in normal
circumstances.

COMPILER 2-3

¢). Running compiled programs

Once a program has been compiled using AC and the object file has been
produced, there is no need to recompile the program every time it is to be used
and programs should subsequently be run by using the following command:-

RUNC < filename > (<optional parameters>)

< filename > is the name of an object file and there is no need to specify the .0’
extension, < optional parameters> is a list of one or more parameters that the

program may require.

The following chapters give details of how to use the run time system to compile
more complex programs.

COMPILER 2-4

COMPILER 3-1

3. THE RUN TIME SYSTEM

The run time system is the heart of the Arnor C compiler and is the program
from which all compilation of code, linking of files and running of compiled
programs is carried out.

Using the run time system

The run time system program is called RUNC.COM and may be used in one of
two ways:-

i) From the editor (APED)
i1) From CP/M command mode

In addition, RUNC may be used in two different forms, interactively and
passively.

Note In order to use RUNC to compile, link or join files, it is necessary for the
following files to be present:-

RUNC.COM the run time system
COMPILE.O the compiler
JOIN.O the joiner

LINK.O the linker

In addition, any library files which will be required by the compiler should also
be available.

a). Using the run time system interactively

When the program is used in interactive mode, it provides an environment in
which programs may be compiled, linked, joined or run. When each process is
completed, a return will be made to the command prompt, ready for further
commands.

The program is called either from the editor, or CP/M, by typing:-

RUNC
from command mode. The screen will clear and a title message including the
version number will appear at the top of the screen. A command prompt will

then be displayed as in the editor. When the program is used in this way, it is in
interactive mode and a variety of commands may be used.

COMPILER 3-2

The following 'built in' commands are available:-

- toselect drive A

- toselect drive B

- to select drive M

- to quit the run time system and return to either CP/M or the
editor, depending on where it was called from.

oZwW»

From this point, it is also possible to run any previously compiled C program
(files with a '.O’ filename extension).

When a command is entered, it is checked against the built in commands and if
no command of that name is found, the program will search for a program of that
name (with a .O extension) and execute it. It is not necessary to specify the '.O’
extension, as this is assumed. Any parameters or options required by the
command or program may also be entered, following the command or program
name.

The program will be found whichever drive it is present on. The order of
searching is M, C, A, B, D. To force a program to be taken from a particular
drive, prefix the name with the drive letter, e.g. B:-DUMP.

For example, entering:-
MYPROG

will run the program called 'MYPROG.O'.
COMPILE filename -L

will run the compiler and pass 'filename -L’ to the compiler as parameters.

b). Using the run time system passively

So far in this chapter, RUNC has been used as an environment for issuing
commands and running programs, but it is also possible to use the run time
system passively.

When the command, '"RUNC, is incorporated as part of a command line from
the editor or CP/M, it will operate passively and 'mvisibly’. An example of this
has already been encountered in the previous chapter, describing automated
compilation, when 'RUNC filename’ was described as the command to run a
compiled program.

When the run time system is used in this way, the title is suppressed and there is
no visible indication of its presence. There is no command prompt and the
program specified as part of the command line will execute immediately.

COMPILER 3-3

The AC.COM program described earlier is directly equivalent to typing:-

RUNC COMPILE < filename > -L -R

from the editor or CP/M. (The following chapters explain the various commands
to compile and link programs, as well as the '-L -R' parameters specified in the

above command.)

c). Supplied programs

Arnor C is supplied with a number of programs for use with the run time system.
These files all end with the extension '.O’ and include:-

COMPILE <fn> (opt)

LINK (of =) <lfl>
JOIN <lf=> <lfl>
* DIR (d) or <afn>
* DUMP <fn>
* ERA <afn>
* REN <ofn> <nfn>
+ TYPE <fn>

Description of abbreviations

The source code compiler.

The linker.

A program to join two or more link files into
one link file.

Utility to list a disc directory.

Utility to dump the contents of a file to the
screen in hexadecimal and ASCII form.

Utility to erase files on disc.

Utility to rename files.

Utility to type the contents of a file on the
screen in ASCII form. (Note: this is intended
for use with text files and using it with
program files may give unpredictable results)

fn a filename

afn ambiguous filename (including wildcards)

ofn old filename

nfn new filename

of = optional object filename for resulting file
= link filename for resulting file

Ifl list of link files to be used

d drive letter

Parameters in angle brackets '<..>' are mandatory, whilst those in normal

brackets '(..)" are optional.

COMPILER 3-4

Note: the files marked with an asterisk (+) are provided for convenience and are
similar to the equivalent commands in the editor with the following exceptions:-

DUMP An extra option, allows the file to be dumped from a given offset
address within the file. The address is given as a C constant.

dump test.l 0x1000

ERA An extra feature is the 'verify’ option. If a 'V’ is typed after the
filename, then for each file being erased a prompt will be given
asking for confirmation.

TYPE has the same enbancement as DUMP,

d). Redirection from the command line

When a program is run, three files are automatically opened. These are called
'stdin’, 'stdout’ and 'stderr’. By default, 'stdin’ receives keyboard input and
directs it to the screen. 'stdout’ directs program output to the screen and 'stderr’
sends error messages to the screen.

These files may be redirected to other "devices’, as listed below.

<filename redirects stdin to read from a file

>filename redirects stdout to a file .

> >filename redirects stdout, appending to an existing file
#filename redirects stderr to a file

>filename redirects stderr, appending to an existing file

One of the most useful of these redirections is to send any error messages
produced during compilation to a file on disc. The resulting file may then be
loaded into the editor for viewing at the same time as corrections are made to the
source code, or may be viewed by using the 'TYPE' command.

Note: These redirections may be made from the editor or from the run time
system.

COMPILER 3-5

e). The Screen Driver

The run time system contains specially written screen driver routines to take full
advantage of the Amstrad computers and in order to optimise speed of screen
writing,

In addition, provision is made to use 'windows’ and special functions are
provided in the libraries to permit the easy use of windows.

As a result of this, the usual methods of locating the cursor, clearing the screen
etc., which are somewhat messy, are no longer necessary and the special
functions provided for these purposes should be used instead. Full details of all
these functions are given in the chapter on Library functions.

COMPILER 3-6

COMPILER 4-1

4. THE COMPILER

The compiler converts source code, written with the editor, into a form suitable
for linking with the standard library files and other link files and, in the process,
carries out certain syntax checks.

a). What the compiler does.
The compiler carries out its work in three stages.

(i) The pre-processor and lexical analysis pass.
gii) The syntax checking and code generation pass.

v s

iif) The post processor pass.

(i) The pre-processor and lexical analysis pass

The initial pass creates a temporary file containing a series of lexical tokens. This
means that each instruction, variable, constant or other symbol is replaced by a
single number.

There are several pre-processor commands, each of which has an effect on the
compiled code.

The pre-processor commands are listed below and operate in the standard
manner, as described by Kernighan & Ritchie, with two small exceptions which
are noted.

#assert
#define
#elif
#else
#endif
#if
#ifdef
#ifndef
#include
#line
#undef

COMPILER 4-2

#assert is not mentioned by Kernighan & Ritchie. Its purpose is to
check the value of a constant expression and stop compilation if
the value is zero.

e.g. #assert test > 0

#include differs from Kernighan & Ritchie in one respect. This concerns
the characters used to enclose the filename.

#include "filename” - Searches for the file only on the current drive.
#include < filename> - Searches for the file on any drive.

Errors that may occur during the first pass include the illegal use of macros, by
invoking a macro with the wrong number of parameters, for example, or not
finding a specified #include file. An error on the first pass causes compilation to
be abandoned.

(ii) The syntax checking and code generation pass

The second pass checks the program syntax and generates the compiled code.
Error and warning messages are listed as the errors are found and compilation
continues until the specified maximum number of errors have occurred. If an
error occurs, the compiler attempts to recover by scanning forward until it finds a
recognisable statement delimiter or structure. This may mean that a section of
code has been skipped and subsequent error messages may occur solely as a
consequence of the original error.

The names of the functions are listed as they are compiled.
(iii) The post processor pass

This pass simply writes the link file to the disc, using the name of the source file,
but with an 'L’ filename extension.

COMPILER 4-3

b). Using the compiler.

Using the compiler is straightforward and a number of options may be specified,
if required, to modify the compilation process. The syntax used is as follows:-

COMPILE < source> (options)

<source> is the name of the source code file which should have been

saved to disc with the filename extension 'C’.

When specifying the filename in the command, the 'C’ extension may be omitted
as it will be assumed by the compiler. If the source filename is omitted
altogether, the compiler will prompt for a filename.

(options) may, but need not, be specified. These are entered in the form

of letters, each preceded by a hyphen (-) and if more than one
is specified, each separated by a space. The options available
are listed below.

c). Compiler options

-d

defines a macro. The text of the macro definition should follow the '-d".
Example: COMPILE PROG -dDEBUG.

Note: Macro definitions may not contain declarations in this situation.
In the above example, DEBUG is defined with blank replacement text.
It is not possible to use 'DEBUG 1'. This option is useful to permit
conditional assembly of code, by making use of:

#ifdef DEBUG

/* Source code to be compiled only if DEBUG is defined
*/

%endif

If -dDEBUG" is used in the command line the conditional section of
code will be included in the compilation.

suppresses creation of the global table. This can be used when
compiling files consisting purely of data, with the advantage that the
resulting object code will be smaller.

COMPILER 4-4

-1

-W

causes the linker to be run automatically after a successful compilation.

Note: If '-I' is used, it must be the the last of the compiler options,
although it may be followed by further options relating to the use of the
linker (See chapter on the linker for details).

sets the maximum number of errors reported by the compiler before
compilation is abandoned. The default value is 20.
Example: COMPILE PROG -m1.

suppresses the compiler’s sign on message and summary information.
Error messages are still displayed.

specifies the drive to be used for the temporary files. By default this will
be drive M on a PCW, and the current drive on a CPC6128.
Example: COMPILE PROG -tA.

suppresses compiler warning messages. Error messages are still
displayed.

COMPILER 5-1

5. THE LINKER

The linker creates a single executable program from one or more link files that
have been produced by the compiler.

a). What does the linker do?

The action of the linker is to resolve all external references (that is, calls to
functions defined in separate source files) and to relocate all the sections of
code.

For example, when a program that uses PRINTF is compiled, the compiler does
not know where PRINTF is defined. It is, in fact, defined within the standard
library (STDLIB.L) which is a previously compiled link file supplied with
Arnor.C. The linker fills in the references to PRINTF in the main program.

It creates an executable object code file, with the same name as the first of the
specified link files (unless an alternative is specified - see below), but with an 'O’
filename extension.

Programs produced by the linker may then be run from within the run time
system simply by typing the name of the file (without the '.O"). Alternatively they
may be run from the editor or CP/M by typing RUNC followed by the program
name.

b) Using the linker.

Operation of the linker is straightforward and a number of options may be
specified. The syntax for the command is as foliows:-

LINK (object =) <list of link files > (options)

"<object> ="is optional. If an equals sign (=) is typed after the first name, the
object file produced by the linker will be saved with that name, rather than the
name of the first link file. The object filename will not be treated as a link file
name.

In the absence of an object filename, the first link filename will be used as the
object filename, but will also be used as the name of a link file.

COMPILER 5-2

The <list of link files > may contain the names of one or more files with an .L
filename extension. The 'L’ extension may be omitted from the list of names, as it
will be assumed by the linker.

All files in the link file list must be link files produced either by the compiler or
by the Maxam II assembler (See later chapter for details of linking machine code
files).

By default, the standard library file, STDLIB.L, is automatically linked without
the need to specify it in the list of link files, unless specifically excluded with the
link option '-I' (See below).

There are a number of options which modify the action of the linker and these
are listed below:-

¢). Linker options

-1 stops the standard library (STDLIB.L) from being linked. This should
be used when an alternative library (such as SMLIB.L) is used.
e.g. LINK PRIMES SMLIB -L

-n list functions whilst linking. The information is given in the following
form:

< function name > <type > < code offset > < file in which defined >

<type > is a single letter, as follows:
A = an absolute value
C = a C function
D = data

-q suppresses the linker’s sign on message and summary information.
Error messages are still displayed.

T automatically run the program after linking, if linking was successful.
This must be the last of the linker options, although it may be
followed by parameters required by the program at the time it is run,

COMPILER 6-1

6. LINKING MACHINE CODE PROGRAMS

This chapter describes how programs written partly in C and partly in Z80
assembly language, using the Maxam II Assembler, may be linked together.

The most common reason for wanting to write parts of a program in machine
code is in order to produce functions that run faster than if they were written in
C. Functions can be written to "look like" a C function and may be called from a
C program in the same way as if the function had been written in C. It is also
possible to call C functions from machine code.

Considerations

When writing a program in assembler that is to be linked with a C program, or
vice versa, there are several things to be considered.

a). The header file

b). Function headers

c). Accessing passed parameters
d). Returning a value

e). Calling a C function

a). The header file
A header file is provided and should be included at the start of any file
containing machine code functions for use with C. This file contains various
macro and variable definitions.
To include this file, the following instruction should be used:

read "mstdio.h"
mstdio.h also defines an external variable x_main as a word. This must be present
at the start of every assembled file, as it is required by the linker. It is therefore

essential that the read directive is included before any instructions or other
directives.

COMPFILER 6-2

b). Function headers

Each function written in machine code must be preceded by a special sequence
of bytes which identifies it as a function to be called by C. A macro is provided
for this purpose, called frnhdr. Thus, a function should start as follows:

name
fnhdr
. code for function ...

¢). Accessing passed parameters

Parameters are passed to a function on the stack and must be accessed by
indexing into the stack. The parameters are found on the stack in the order they
are given in the function call, the first parameter starting 6 bytes above the stack
pointer on entry to the routine. An extended function header macro, xfrhdr, will
set up the HL register to point to the first parameter.

xfnhdr is defined as follows:

macro xfnhdr
fnhdr

1d h1,6:add hl,sp
mend

It is often convenient to use xfnhdr instead of fnhdr. Alternatively, it is sometimes
better to use the IX or IY register to index the stack:

fnhdr

1d iy,6:add iy,sp

The function must assume that the parameters passed are of known types. The
various types are stored on the stack as follows:

char stored as an int with the high byte zero
int 2 bytes, low byte at the lower address
long 4 bytes, low byte at the lowest address

float/double 5 bytes, as follows:
4 byte signed mantissa, high byte first
exponent, stored offset by 128
pointer all pointer types are 2 byte integers

COMPILER 6-3

Example of accessing parameters from stack:

This example is the code for the function movmem, which is in the standard
library. The comments at the start detail the C declarations.

public movmem ;; allow name to be used elsewhere
movmem :: void movmem(source,dest, len)

;1 char xsource,xdest ;

7+ unsigned len ;

xfnhdr

1d e,(h1):inc hl ; low byte of source
1d d,(h1):inc hl ; high byte of source
push de

1d e,(h1):inc hl : low byte of dest
1d d,(h1):inc hl ; high byte of dest
1d c,(h1):inc hl ; low byte of len
1d b, (h1):pop hl ; high byte of len
ex de,hl
push hl:or a:shc hl,de ; check for overlapping blocks
or a:sbhc hi,bc:pop hl:jr c,mback
ex de,hl:1dir:ret
mback dec bc:add hl,bc:ex de,hl
add h1,bc:inc bc:lddr:ret

d). Returning the function value

Any value to be returned must be stored in a memory location known as the
accumulator. The location depends on the type of value being returned, and it is
accessed by means of a variable and a macro defined in mstdio.h.

To return a value of any integer t{pe (including pointers), it should be stored at
the address iacc. This is a 4 byte location, though the high 2 bytes are only used
when returning a long value. The value to be returned should simply be stored at
iacc, with the low byte first.

To return a floating point value, it should be pushed onto the stack in the
following order:

exponent, stored offset by 128
mantissa, byte 0 (most significant byte)
mantissa, byte 1

mantissa, byte 2

mantissa, byte 3 (least significant byte)

The macro retfloat should then be used, which will pull the number off the stack
into the accumulator and return from the function.

COMPILER 6-4

¢). Calling a C function

To call a C function from machine code, the macro cfunc is used. This is defined
in the file mstdio.h. cfunc takes two parameters, the name of the function and the

number of bytes that have been pushed onto the stack as parameters.

After returning from the C function, these bytes will already have been removed

from the stack.

The following example is the code for fclose taken from the library. In this
example the function being called, close, is actually written in machine code, but

can be called in the usual way because it starts with the function header.

fclose

public fclose
extern close

;3 int fclose(stream)
;3 FILE %stream;

xfnhdr

1d e, (h1):zinc hl

1d d,(h1)

1d a,(de)

1d h1,-1:1d (iaccl),hl
cp &7f:ret nc

push de

1d 1,a:1d h,0

push hl

cfunc close 2
pop hl

1d a,&ff:1d (hl1),a
ret

stream low byte
stream high byte
stream -> handle

return -1 if not a file
save address of file handle

pass file handle on stack

and call the close function

2 bytes on stack

2 bytes already removed by cfunc
recover address of file handle
stream -> handle = OxFF

COMPILER 6-5

The corresponding C definition would be:

int fclose(stream)
FILE *stream:
{
int a;
if (stream -> handle >= 0x7F) return -1;
a = close(fileno(stream));
stream -> handle = OxFF;
return a;

COMPILER 6-6

COMPILER 7-1

7. THE JOINER

a). What the joiner does

The joiner takes two or more link files and merges them to produce a single link
file. The principle use for this command is the creation of special library files and
is the method that was used to produce STDLIB.L from various separately
compiled and assembled routines.

b). Using the joiner
The syntax for the joiner is similar to the syntax used with the linker.
JOIN <linkfile> = <list of link files> (options)

The <list of link files> may contain the names of one or more files with an .L
filename extension. The '.L’ extension may be omitted from the list of names, as it
will be assumed by the joiner.

All files in the link file list must be link files produced either by the compiler or
by the Maxam II assembler.

There are a number of options which modify the action of the joiner which are
listed below.

c). Joiner options

-n list functions whilst joining. The information is given in the following
form:

< function name > < type > < code offset > < file in which defined >

<type> is a single letter, as follows:
A = an absolute value
C = a C function
D = data

-q suppresses the joiner's sign on message and summary information.
Error messages are still displayed.

COMPILER 7-2

COMPILER 8-1

8. SUMMARY OF WAYS TO COMPILE

Full details of the commands and options available are given in the chapters
covering each command and the object of this chapter is to show how these
programs, commands and options may be used in conjunction with each other.

Arnor C consists of two main programs. The editor, '"APED.COM/, is used for
the creation of all source code and the run time system 'RUNC.COM, is the
program through which all compilation, linking and joining of programs is
carried out. A third program, 'AC.COM’, is provided and this automates the
processes of compiling and running simple C programs.

Once the code has been entered and saved with the editor, two options are
available:-

a). Compile and run the program from within the editor.
b). Compile and run from the run time system.

a). Compile and run the program from within the editor

Programs may be compiled and run from within the editor in a number of
different ways:-

(i) Using AC.COM

The simplest way to compile and run a program consisting of only a single
source file is to use the AC command. The process is completely automatic and it
is not possible to specify any special options. Typing:-

AC will compile and run the file in memory
AC filename will compile and run the specified file

When compilation is complete, the resultant link file will be automatically linked
with the standard library file and, if both compilation and linking are successful,
the program will automatically run on completion of linking.

When execution is complete, or if compilation, or linking fail, a return will be
made to the editor and further editing of the source code may be carried out. If
the source file was in memory when AC was called, it will still be present and
available for immediate editing.

COMPILER 8-2

(ii) Using RUNC

The run time system 'RUNC.COM', may be used from within the editor and
when used in this way, its presence will not be visually apparent. Alternatively,
RUNC command mode can be entered from the editor and this is more suitable
for complex or multiple compilations and is described in b) below.

The choice of which method to use is quite simple. If used passively, from the
editor's command mode, as soon as that command sequence has been completed
the editor will be re-entered. If RUNC is being used instead of the AC command
to enable special options to be selected when compiling a single file, this will
probably be the most convenient option. The syntax and options vary according
to which command is used and the simplest way is to give some examples:-

RUNC COMPILE filename -L -R

will compile the file called filename, the '-L' option will cause it to be linked and
the "-R’ will be passed to the linker and is the option to run the resultant
program. On completion of running the program, a return will be made to the
editor. This is effectively what happens when the AC command is used.

RUNC LINK obfile = smlib sourcel source2 -L

will link the already compiled link files 'sourcel’ and ’source2’ with the small
library file. The '-L' option will suppress the linking of the standard library file,
which is normally carried out automatically. The resultant object file will be
saved with the 'obfile’ filename.

If a number of compilation commands are required, it is more convenient to
enter the run time system and remain there until all work has been completed
and this is covered in the next section.

COMPILER 8-3

b). Compile and run from the run time system
The run time system may be entered from the editor by typing:-
RUNC

The run time system program will load and the status message will appear at the
top of the screen, with a command mode prompt and cursor beneath. From this
point, commands may be entered in exactly the way that they were described in
the previous section, with the exception that the 'RUNC’ should be omitted. All
options for the compiler, linker and joiner are available and the various modules
may be automatically linked, as before.

Care should be taken with the order in which the options are specified. The "-L'
option, to call the linker, must be the last of the compiler options and '-R’, to run
the object file, must be the last of the linker options. It is quite permissible to use
other options after the compiler '-L’, or linker "-R’, as long as the options which
follow relate to the subsequent command.

COMPILE filename -Q -L -Q -R datafile

will compile the file called filename, suppressing the opening message and
summary and automatically link the resultant file with messages suppressed and
finally run the object file, passing 'datafile’ as a parameter required by the object
file.

JOIN linkfile = link1 link2 -Q

will join the link files, 'link1’ and 'link2’ and save them as one link file called
'linkfile’ and the opening message and summary will be suppressed.

¢). Using RUNC from CP/M command mode

The run time system can be used from CP/M in exactly the same ways as
described for the editor. RUNC may be used on its own to enter the run time
system, or with the additional commands and options to compile or link a
program. The only difference in operation is that when the command is
completed or terminated, a return will be made to CP/M.

COMPILER 8-4

d). Running compiled programs

Previously compiled programs may be run without the need for recompilation, at
any time, either from CP/M or the editor by using the following command
syntax:-

RUNC progname (parameters)
(parameters) is optional and they are only necessary when a program requires

parameters passing in the command tail. Alternatively the program may be run
from within the run time system by omitting 'RUNC'.

COMPILER 9-1
A9. LIBRARY FUNCTIONS

This chapter gives full details of each library function. Functions may be
described as being:-

Standard - as mentioned by Kernighan and Ritchie, or found in
, the majority of C systems.

Common - found m many C systems.

Arnor C - functions specially written for Arnor C. Most of the

functions concerned with screen handling and
windows are of this sort.

Note: If programs are intended to be made 'portable’ to other machines, the
Standard functions should be used wherever possible.

Each function lists the parameters and the declarations required. The description
covers whether the function is Standard or not, which library file it is in and
describes its purpose. The results returned, if any, are also described.

All functions except the mathematical functions are contained in the library,
STDLIB.L which is used by default. The mathematical functions are marked
'Maths' in the list below. The small library, SMLIB.L contains a subset of the
functions in STDLIB.L, and these functions are marked 'Small’.

Additionally some functions are implemented as macro definitions in the header
file, STDIO.H, and these are marked 'Macro’.

A summary of all functions can be found as Appendix 3.
Example programs

Programs showing examples of the use of many of the library functions are
provided on the disc. Consult the file 'README' for details.

COMPILER 9-2

abort

void abort()

Description: Common

Terminates the program without closing files. It is the same as _exit(1).
Returns: doesn't return.

abs

abs(x)

Description: ~ Standard, Macro

Takes the argument x and returns the absolute value of it. Note that this function
is declared as a macro, and will work with any numerical argument.

Returns: the absolute value of x.

acos

double acos(x)

double x ;

Description: Common, Maths

Returns the inverse cosine of x, in radians. x must be in the range -1.0 to +1.0.
Returns: the inverse cosine of the argument, x, in radians.

asin

double asin(x)

doublex ;

Description: Common, Maths

Returns the inverse sine of the argument x, in radians. x must be in the range -1.0
to +1.0.

Returns: the inverse sine of the argument x, in radians.

COMPILER 9-3

atan
double atan(x)
double x ;

Description: Common, Maths

Returns the inverse tangent of the argument, x, in radians. x may be any real
number.

Returns: the inverse tangent of the argument, x, in radians.
atan2

double atan2(xy)

double x,y ;

Description: Common, Maths

Returns the inverse tangent of y/x in radians. y and x may be any real numbers.
Returns: the inverse tangent of y/x in radians.

atof

double atof(s)

char *s ;

Description: Standard

Converts the string pointed to by s into a double. The string may have leading
spaces and tabs, and follows the C syntax for a floating point constant.

Conversion stops at the first inappropriate character.

Returns: floating point value of the string, or 0 if no number recognised.

atoi
int atoi(s)
char s ;

Description: Standard

Converts the string pointed to by s into an integer. The string may have leading
spaces and tabs, and follows the C syntax for an integer constant. Conversion
stops at the first inappropriate character.

Returns: integer value of the string, or 0 if no number recognised.

COMPILER 94

atol
long atol(s)
char *s ;

Description: Standard

Converts the string pointed to by s into a long integer. The string may have
leading spaces and tabs, and follows the C syntax for an integer constant.
Conversion stops at the first inappropriate character.

Returns; long integer value of string, or 0 if no number recognised.

bdos
long bdos(c,de)
intc, de;

Description: Arnor C, Small

Calls the BDOS routine specified by c, gassin de in the DE register. Returns a
long composed of the values returned from the BDOS routine; the low integer
holding the value returned in A, the high integer the value returned in HL.,

Note: the Arnor C screen output functions do not use the BDOS routines, and so
the BDOS console output routines should not be used. Similarly, the BDOS
console input routines are redundant (although their use should cause no
problems).

Returns: a long composed of the values returned from the BDOS routine.
bios

int bios(n)

intn;

Description: Arnor C

Calls the BIOS routine n, and returns the value returned in the A register.

Returns: the value passed back by the BIOS routine.

COMPILER 9-5

busypr
int busypr()

Description: Arnor C
Tests whether the printer is ready.

Returns: TRUE if ready, or FALSE if not.

call

void call(addr,regs)
unsigned addr ;

int regs[6] ;

Description: Arnor C

This is a general purpose routine for calling machine code at a specified address,
and is provided only for specialised use. regs is a vector, in which is passed the
values to be passed to the routine in the Z80 registers. The registers are stored as
follows (each with the low byte first):

regs[0] AF
regs[1] BC
regs[2] DE
regs[3] HL
regs[4] IX
regs[5] Iy
Returns: regs will be updated to contain the values of the registers on exit

from the machine code routine.

calloc

char icalloc(number,size)
unsigned number,size ;
Description: ~ Standard

Allocates a block of memory of number * size bytes. The memory is initialised to
Zeros.

Returns: a pointer to the start of the block, or NULL (0) if unsuccessful.

COMPILER 9-6

ceil

double ceil(d)

double d ;

Description: Common, Maths

Returns the smallest integer greater than or equal to the argument.
Returns: the smallest integer greater than or equal to the argument.
clearerr

void clearerr(fp)

FILE +fp;

Description: Standard, Macro

Clears the error indication for the stream fp.

Returns: nothing,
close

int close(handle)

int handle ;

Description: ~ Standard, Small

Closes the file with specified handle.

Returns: 0 if successful, ERROR (-1) if an error occurred.
cos

double cos(x)

double x ;

Description: Common, Maths

Returns the cosine of the argument, which is in radians.

Returns: the cosine of the argument, in radians.

COMPILER 9-7

cosh

double cosh(x)

double x ;

Description: Common, Maths

Returns the hyperbolic cosine of the argument.

Returns: the hyperbolic cosine of the argument.
creat

int creat(name,pmode)

char *name ;

int pmode ;

Description: ~ Standard, Macro

Creates a file with the specified name. This function is included for compatibility
with early versions of C. prmode is ignored. New ﬁin'ograms should use either
fopen or open to create new files. If successful, the file is opened for writing, and
a file handle is returned.

Returns: a file handle if successful, ERROR (-1) if not.

cursoff

void cursoff{()

Description: Arnor C, Small

Turns off the cursor display.

Returns: nothing,

curson

void curson()

Description: Arnor C, Small

Turns on the cursor display. This routine is not usually needed because the
cursor is automatically turned on by getch when waiting for a key, and turned off

afterwards.

Returns: nothing.

COMPILER 9-8

drsearch
int drsearch(fname)
char xfname ;

Description: Arnor C, Small

Searches for the specified file on all drives, in the order M,C,A,B,D. If the file is
found on a drive, that drive is selected, otherwise the selected drive remains the
same.

Returns: ERROR (-1) if an error occurs, otherwise 0.
ecvt

char *ecvt(val,ndig dp,sign)

double val ;

int ndig, «dp, *sign ;
Description: Common

Converts the double val into its ASCII representation (printf() %e format) with
ndig significant digits. The position of the decimal point relative to the beginning
of the string is stored in *dp. If *dp is negative, the decimal point is positioned
that many places to the left of the string. #sign will contain zero if val is non-
negative, or a non-zero value if val is negative. The string is written into a static
workspace, which is used by every call to ecvt or fevt.

Returns: a pointer to the string of digits.

execv
void execv(name,argv)
char sname, »argv[];

Description: Common

Constructs a string from the strings pointed to by name, argv[0],
argv{1],...(separating them by spaces), and passes the result to _exec. If there are
n arguments, argv/n] must be NULL (0). The maximum possible length for the
resulting string 1s 255 characters.

Returns: nothing.

COMPILER 9-9

exit

void exit(ecode)

int ecode ;

Description: Standard, Small

Flushes all output buffers, closes all output files and returns from the program
with an exit status given by ecode. By convention ecode is zero to indicate a
normal end of program and non zero to indicate an error. The error code is used
to set the CP/M return code and may be accessed by other programs.

Returns: doesn't return.

exp

double exp(x)

doublex ;

Description: Common, Maths

Returns the natural exponent of the argument x (e to the power of x).

Returns: the natural exponent of the argument x.

fabs

double fabs(d)

double d;

Description: Common, Maths

Returns the absolute value of the floating point argument, d.

Returns: the absolute value of the argument.

fbinary

int fbinary(fp)

FILE *fp;

Description: Arnor C

The translation mode for the stream fp is set to binary.

Returns: 0 is returned if successful, ERROR (-1) if the stream fp is not in
use.

COMPILER 9-10

fclose

int fclose(fp)

FILE fp;

Description: Standard, Small

Closes the file whose file descriptor is pointed to by fp. Any output buffer for fp
is flushed before closing.

After redirecting one of the standard streams (stdin, stdout, stderr, stdpm),
fclose may be used to restore the default setting, e.g. fclose(stdin) will cause
input to be taken from the keyboard again.

Returns: 0 if the stream is successfully closed, ERROR (-1) on error.

fevt

char «fcvt(val,ndig dp,sign)
double val ;

int ndig, *dp, *sign ;
Description: Common

The same as ecvt except that ndig is the number of digits after the decimal point
(printf() %f format).

Returns: a pointer to the string.

feof

int feof(fp)

FILE fp ;

Description: Standard, Small

Tests whether the end of file has been reached on stream fp.

Returns: 0 if end of file has not been reached, non-zero if currently at the
end of the file, or ERROR (-1) if an error occurs.

COMPILER 9-11

ferror

int ferror(fp)
FILE %fp;

Description: Standard, Macro

Returns the number of the last error that occurred whilst accessing the stream fp.
If no errors have occurred zero is returned. Any disc I/O error that occurs causes
the error flag to be set, and this flag may be checked at any later time, using
ferror.

The error codes returned by ferror can be used to determine the function in
which the error occurred. Note that these values are specific to Arnor C.
Programs which need to be portable may only assume that a non zero code
signifies an error of some kind. The error codes are as follows:

fclose
feof
fflush
fgetc
fputc
fread
fwrite
fseek
ftell
10 ungetc

WO WNAWN

Other functions call one of the above, for example fgets calls fgetc.

Returns: 0, if no errors, otherwise the number of last error.

filush

int fflush(fp)
FILE +fp;

Description: Standard

Flushes all file buffers. If a file is open for writing, the buffer is written. If it is
open for reading, the buffer is cleared. The parameter fp is included for
compatibility with other versions of C, but is not used.

Returns: 0, if buffers were successfully flushed, otherwise ERROR (-1).

COMPILER 9-12

fgetc

int fgetc(fp)
FILE «p;

Description: Standard, Small
Reads the next character from the stream fp.

Returns: the character read, or EOF (-1) if an error occurred or end of file
was encountered.

fgets

char *fgets(s,n,fp)
char *s;

intn;

FILE +p;

Description: Standard, Small

Reads characters from the stream fp into the string pointed to by s. Reading
stops when n-1 characters or a newline are read, end of file is encountered or an
error occurs. If a newline is read, it is included in the strmg The string read is
terminated with a zero.

Returns: s if successful, NULL (0) if an error occurred or end of file was
encountered.

fileno

int fileno(fp)
FILE «fp;

Description: Standard, Macro

Returns the file handle for the given stream. File handles are between 0 and
MAXFILES-1. Other values returned have the following meanings:

O0xFF stream not in use

0x80 stream takes input from keyboard and outputs te screen

0x7F stream outputs to parallel printer, no input

Returns: the file handle for the given stream. See also above.

COMPILER 9-13

filesize

long filesize(name)

char *name ;

Description: Common

Returns the length of the file in bytes.

Note: under CP/M exact file sizes are not stored, and so the result will be a
multiple of 128 bytes.

Returns: file size in bytes (multiples of 128 bytes), ERROR (-1) if
unsuccessful.

firmware

void firmware(addr,regs)
unsigned addr ;

int regs[6] ;

Description: Arnor C

Calls a routine in the extended firmware jump block, or the firmware ROM
(CPC6128 only), using the same format as call for the parameters. For details of
these routines, consult the following books:

"The Digital Research CP/M Plus Manual for Amstrad PCW8256/CPC6128"
"CPC464/664/6128 Firmware" (Soft 968)

Returns: nothing,

floor

double floor(d)

double d ;

Description: Common, Maths

Returns the greatest integer less than or equal to the argument.

Returns: the greatest integer less than or equal to the argument.

COMPILER 9-14

fmod

double fmod(xy)
doublex, y;

Description: Common, Maths

Returns the floating Eoint remainder. If y is zero, x is returned. Otherwise the
returned value z has the same sign as x, is less than y, and satisfiesx = i *y + z,
where / is an integer.

Returns: the floating point remainder.

fopen
FILFE xfopen(name,mode)
char name, ¥mode ;

Description: Standard, Small

Opens the file name. mode is a zero-terminated character string indicating how
the file is to be opened. Possible values are :
"r" Open for reading, position at start of the file. The file must exist.
"w" Open for writing, if the file exists it is truncated (the contents are
discarded), otherwise the file is created.
"a" Open for appending, if the file exists it is opened for writing at the
end of the file, otherwise the file is created.
"r+" Open for reading and writing, position at start of the file. The file
must exist.
"w+" Open for reading and writing, if the file exists it is truncated,
otherwise the file is created.
"a+" Open for reading and appending, if the file exists position at end of
file, otherwise create the file.

All open modes allow random access of files with fseek. In this implementation
all modes allow reading of the file, thus "w" and "w+" are equivalent, as are "a"
and "a+". fopen returns a pointer to the file if successfully opened, a NULL

pointer (0) in case of error.

Note that modes "a" and "a+" cause a seek to the end of file on opening the file,
and not before every write operation. This is because the exact end of file is not
maintained by CP/M. However if a file was written sequentially using Arnor C,
opening it in append mode will correctly position the file pointer after the last
byte that was written to the file.

COMPILER 9-15

Note: binary and text files

In text (or translated) mode carriage returns are ignored on input, and on output
a line feed causes the two characters carriage return, line feed to be written. The
CTRL-Z character (26) is taken to mean end of file when using text mode. The
default mode is text mode.

This translation is performed by the standard character I/O routines, fputc and
feetc. These are called by fgets, fputs, forintf and fscanf. Data input or output
using fread and fwrite is not translated because these routines use fast block 1/O.

In binary (or untranslated) mode the data is read from the file and passed to the
program exactly as it is. To open a file in binary mode a "b" must be the last
character in the mode string, e.g. fopen(infile,"r+b") or fopen("data.bin","wb").
The routines fbinary and ftext allow the translation mode to be changed after a
file has been opened.

Returns: a pointer to the file, or NULL (0) pointer if unsuccessful.
fprintf

int fprintf(fp,form,args...)

char sform ;

FILE «fp ;

Description: Standard, Small

Writes a string to the stream fp using the format string form and inserting the
arguments accordingly. See printf for details on how the format string is
interpreted.

Returns: 0 if successful, otherwise ERROR (-1).

fputc

int fputc(c,fp)

intc;

FILE «fp;

Description: Common, Small

Writes the character ¢ to the stream fp. Returns c if successful, ERROR (-1) on
€rror.

Returns: the character, if successful, ERROR (-1) on error.

COMPILER 9-16

fputs

int fputs(s,fp)

char s ;

FILE «fp;

Description: ~ Standard, Small

Writes the string s (excluding the terminating zero) to the stream fp.

Returns: 0 if successful, non-zero if an error occurred.
fread

int fread(buf,size,n,fp)

char +buf ;

unsigned size, n ;

FILE «p;

Description: Standard, Small

Reads n items, each size bytes long, from the stream fp and stores them in the
buffer buf. The number of items read is returned, or ERROR (-1) is returned if
an error occurred.

Returns: the number of items read, or ERROR (-1) if an error occurred.

free

void free(p)

char *p;

Description: ~ Standard, Small

The block pointed to by p is freed for re-use by the memory allocator. p must be
a value that was returned by a call to malloc or calloc. If p is not such a value, the
effect is not defined.

Returns: nothing,

COMPILER 9-17

freopen ,

FILE sfreopen(name,mode,fp)
char sname, *mode ;

FILE ~p;

Description: Standard

The stream fp is closed, and is replaced by the file name with the specified open
mode. This routine is most commonly used for re-directing stdin or stdout.

Returns: b, if successful, otherwise NULL (0).

frexp

double frexp(x,p)
double x ;

int *p ;
Description: Common, Maths

Splits x into mantissa and exponent. The exponent is stored at the address
pointed to by p, and the mantissa is returned by the function.

Returns: mantissa of x.
fscanf

int fscanf(fp,form,args...)

char sform ;

FILE fp;

Description: Standard

Reads a string from the stream fp using the format string form, extracting the
arguments accordingly and storing them through the args pointers. See scanf for
information on how the string is interpreted.

Returns: the number of arguments assigned, or EOF (-1) on error or end
of file.

COMPILER 9-18

fseek

long fseek(fp, offset, origin)
FILE +fp;

long offset ;

int origin ;

Description: Standard, Small

The file pointer for the stream fp is moved to the position offset relative to the
specified origin. The values of origin have the following meanings:

0 - the start of the file

1 - the current position

2 - the end of the file
fseek should not be used to seck beyond the end of the file.

Note: If the file is opened in text mode, care must be taken with the offset values.
The offset refers to the actual number of bytes in the file, not the number of bytes
that would be read in translated mode. As a general rule, only use values
returned by ftell as offsets when using text mode. Alternatively use only binary
mode to avoid this problem.

Care should be taken if seeking from the end of a file. Since CP/M stores files in
128 byte blocks, the exact end of the file will not be known. In general it is
advisable to seek either from the start or the current position.

Returns: 0 if successful, otherwise ERROR (-1).

ftell

long ftell(fp)
FILE fp;

Description: Standard, Small

Returns the offset of the current pointer into the file associated with stream fp.
This value is suitable for use with fseek with origin 0. If an error occurs ftell
returns (long) -1. See note under fseek concerning files opened in text mode.

Returns: the offset of the current pointer into the file, or ERROR (-1), on
error.

COMPILER 9-19

ftext

int ftext(fp)

FILE +fp ;

Description: Arnor C

The translation mode for the stream fp is set to text.

Returns: 0 if successful and ERROR (-1) if the stream fp is not in use.
fwrite

int fwrite(buf,size,n,fp)

char *buf ;

unsigned size, n ;

FILE +p;

Description: ~ Standard, Small

Writes n items, each size bytes long, to the stream fp. The data is taken from the
buffer buf.

Returns: the number of items written, or ERROR (-1) if an error
occurred.

gcvt

char #gevt(valndig buf)
double val ;

int ndig;

char *buf ;

Description: Common
This is equivalent to sprintf(buf,"%+g",ndig val).
Returns: 0, if successful, otherwise ERROR (-1).

COMPFILER 9-20

getc

int getc(fp)

FILE +p;

Description: Standard, Small
The same as fgetc.

Returns: the character read, or EQF (-1) if an error occurred or end of file
was encountered.

getch

int getch()

Description: Common, Small

Gets a character from the keyboard, but without echoing to the screen.
Returns: the character read, or a value of ERROR (-1), on error.
getchar

int getchar()

Description: Standard, Macro

Gets a character from the standard input. This function is equivalent to
getc(stdin).

Returns: the character read, otherwise ERROR (-1) on error.
getche

int getche()

Description: Common, Small

Gets a character from the keyboard, and echoes it to the screen.

Returns: the character read, or a value of ERROR (-1) on error.

COMPILER 9-21

getcurs

void getcurs(col,row)

int *col, ¥row ;

Description: Arnor C, Small

Returns the current cursor position in the variables whose addresses are passed.
The top left of the window is position (0,0).

Returns: the current cursor position in the variables whose addresses were
passed.

getdrive

int getdrive()

Description: Arnor C

Returns the currently selected drive, 0=A, 1=B, 12=M,

Returns: the currently selected drive, 0=A, 1=B, 12=M.

gets

char gets(str)

char *str;

Description: Standard, Small

Reads characters from stdin into the string str until a newline is read or end of
file is encountered. The string is terminated with a zero. str must be large enough
to hold the resulting string,

Returns: str if successful, or NULL (0) on error.

getw

int getw(fp)

FILE fp;

Description: Standard, Small

Reads a two byte integer from the stream fp (low byte first), and returns the
value. Since all return values are valid, ferror should be used to test for errors.

Returns: value read from stream fp.

COMPILER 9-22

getwin

void getwin(x1,y1x2,y2)

int wx1, %yl %2, »y2 ;

Description: Arnor C, Small

Returns the absolute physical screen coordinates of the current window. The top
left is (xLyl), the bottom right is (x2,y2). The addresses of 4 integer variables
must be passed. Top left of the screen 1s (0,0).

Returns: absolute screen coordinates of current screen window.
index

char «index(s,c)

char *s ;

charc;

Description: ~ Standard, Small

index is another name for strchr.

Returns: pointer to character, or if not found, NULL (0).

inp

char inp(addr)

unsigned addr;

Description: Common

Reads a byte from the specified I/O port.

Returns: value read from port.

invoff

void invoff()

Description: Arnor C, Small

Turns off screen 'inverse mode'. See invon below.

Returns: nothing,

COMPILER 9-23

invon
void invon()

Description: Arnor C, Small

Selects 'inverse mode’. All characters printed subsequently will have the
background and foreground reversed.

Returns: nothing,

is???? functions

Returns TRUE if
int isalnum(c) cis a letter or digit
int isalpha(c) cis aletter
int isascii(c) c is less than 128
int iscntri(c) c is a control character (127 or less than 32)
int isdigit(c) cis a decimal digit
int isgraph(c) cis a printable character and not space
int islower(c) cis a lower case letter
int isprint(c) cis a printable character (including space)
int ispunct(c) c is a punctuation character (isprint and not isalnum)
int isspace(c) c is a space, tab, return, line feed or form feed
int isupper(c) cis an upper case letter
int isxdigit(c) c is a hexadecimal digit

charc;
Description: Standard, Macro

These functions all test a character argument. These are implemented as macros
and functions. It may be necessary to use the function forms if use of the macro
causes unwanted side effects. In order to use the function version #undef should
be used to remove the appropriate macro definition.

Returns: non zero (TRUE) if the test succeeds, and zero (FALSE) if it
fails.

COMPILER 9-24

kbhit
int kbhit()

Description: Common, Small

Tests whether a key has been pressed, returns TRUE if so, FALSE if not. If
TRUE is returned, the character is not read but will be returned by the next call

to getch or getche.

Returns: TRUE if key pressed, otherwise FALSE.
Idexp

double ldexp(x,i)

double x ;

inti;

Description: Common, Maths

Calculates the value of x * (2 to the power of i).
Returns: the value of x # (2 to the power of i).
log

double log(x)

doublex;

Description: Common, Maths

Calculates the natural logarithm of the argument, which must be positive.
Returns: the natural logarithm of the argument.
log10

double log10(x)

double x ;

Description: Common, Maths

Calculates the logarithm to base 10 of the argument, which must be positive.

Returns: the logarithm to base 10 of the argument.

COMPILER 9-25

longjmp

void longimp(env,val)
jmp_bufeny;

intval;

Description: Standard, Small

Performs a 'goto’ between functions. This is particularly useful for dealing with
errors encountered in low level subroutines of a program. longjmp restores the
environment saved by the last call to setjmp with the same env argument. After
longimp is completed, program execution continues as if the corresponding call
to setjmp had just returned the value val. All accessible data have values as of the
time Jongjmp was called. It is important not to call Jongjmp before a call has been
made to setjmp, and it must also not be called after the function that most
recently called setjmp has returned.

Returns: returns val, which must not be zero.
Iseek

long Iseek(h, offset,origin)

int h, origin ;

long offset ;

Description: Standard, Small

The pointer into the file whose handle is # is moved to position gffset relative to
the specified origin. The values of origin have the following meanings:

0 - the start of the file

1 - the current position

2 - the end of the file

Returns: the offset in bytes of the new position from the beginning of the
file, or ERROR (-1) if an error occurred.

COMPILER 9-26

mallinfo

maliblock »mallinfo()
Description: Arnor C, Small

Returns a pointer to a structure giving information about the current state of the
memory allocation. The structure is as follows:

struct
unsigned int limalloc ; /* size of largest free block in bytes */
unsigned int nfree ; /+ total free space in bytes */
unsigned int nalloc ; /* total allocated space in bytes */

) int nblocks ; /* the number of free blocks */

Returns: a pointer to a structure giving information about the current state

of the memory allocation.

malloc
char smalloc(nbytes)
unsigned nbytes ;

Description: ~ Standard, Small

A block of memory of size nbytes is allocated from the heap. There is a small
memory overhead for each allocated block.

Returns: a pointer to the block of memory allocated, or NULL (0) if there
is not enough memory.

matherr
matherr(e)
struct exception *e ;

Description: Common, Maths

matherr() is called by functions in the mathematical library when errors are
detected. Users may use the library supplied matherr() function or define their
own procedures for handling errors by including a function named matherr() in
their programs. matherr() must be of the form described above. A pointer to the
exception structure will be passed to the user supplied matherr() function when
errors occur, The structure is defined in the header file <amorh>.

Returns: 0 if the error was handled correctly, 1 otherwise.

COMPILER 9-27

max
max(vallval2)

Description: Common, Macro

Determines the higher of the two values passed. This function is implemented as
a macro and can be used with any types.

Returns: the higher of the two values passed.

memchr

char smemchr(m,c,n)
char sm;

charc;

unsignedn;

Description: Common

memchr searches n bytes of memory starting at m for the first occurrence of the
character c.

Returns: a pointer to the character, or NULL (0) if not found.
memcmp

int memcmp(ml,m2,n)

char ¥ml,*m2;

unsignedn;

Description: Common

Compares successive bytes of memory starting at m1 and m2, until either the
bytes have different values, or n bytes have been compared.

Returns: a positive, zero or negative value depending on the result of the
comparison of the first pair of different bytes (positive if m1 is greater).

COMPILER 9-28

memcpy
char xmemcpy(ml,m2,n)

char xm1*m2;

unsigned n ;

Description: Common

Copies n characters from m2 to m1.
Returns: ml

memset

char smemset(m,c,n)

char »m;

charc;

unsigned n ;

Description: Common

Sets n bytes starting at m to the value c.
Returns: m

min

min(vallval2)

Description: Common, Macro

Determines the lower of the two values passed. This function is implemented as a
macro and can be used with any types.

Returns: the lower of the two values passed.
modf

double modf(x,p)

double x,»p ;

Description: Standard, Maths

Calculates the fractional value of x with the same sign as x. The integral part of x
is stored at the location pointed to by p.

Returns: the fractional value of x with the same sign as x.

COMPILER 9-29

movmem

void movmem(source,dest,len)
char *source, *dest ;

unsigned len ;

Description: Common

Moves len bytes of memory from source to dest. The two memory blocks may be
overlapping,

Returns: nothing,
open

int open(path,mode)
char *path ;

int mode ;

Description: Standard, Small

The file is opened. The mode is constructed by an 'inclusive or’ of the following
constants. The values of these constants are defined in the file STDIO.H.

Note: Not all combinations are permitted.

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

O _CREAT create file if it does not exist

O _TRUNC truncate the file if it exists

O_APPEND seek to the end of file after opening. This does not cause a
seek to the end of file before every write operation, fopen
must be used with mode "a" or "a+" to achieve this.

O_EXCL an error occurs if both O_CREAT and O_EXCL are set.

Returns: the file pointer if successful or ERROR (-1) if an error occurred.

COMPILER 9-30

outp

void outp(addr,c)
unsigned addr ;

charc;

Description: Common

Writes a byte, c, to the specified /O port. The computer manual should be
consulted for the port addresses.

Returns: nothing.

peek

char peek(addr)

unsigned addr ;

Description: Common

Reads the value of the byte stored at memory address addr.
Returns: the value of the byte stored at memory address addr.
poke

void poke(addr,c)

unsigned addr;

charc;

Description: Common

Stores the byte ¢ at the specified memory address.

Warning: this is potentially a very dangerous function and is intended for
specialised use only.

Returns: nothing.

COMPILER 9-31

pow
double pow(x,y)

double x,y ;

Description: ~ Standard, Maths

Calculates the value of x to the power of y.
Returns: the value of x to the power of y.
prch

int prch(c)

charc;

Description: Arnor C

Sends a character to the printer.

Returns: TRUE if successful, otherwise FALSE.
printf

int printf(form,argl,arg2,...)

char sform ;

Description: ~ Standard, Small

printf is a general purpose formatted print routine which sends its output to
stdout. Arguments are interpreted according to the zero-terminated format
string. The format string is a sequence of characters with embedded conversion
commands. Conversion commands are prefixed by '%'. Characters that are not
part of the conversion command are output.

The general format of a conversion command is:
%fw.plc
f, w, p and ! are optional.

¢ (conversion character) specifies the type of argument. Each conversion
command causes the next argument to be read from the argument list.

COMPILER 9-32

The following conversion characters are provided:

decimal signed integer

unsigned decimal integer

octal integer

hexadecimal integer (using lower case letters)
hexadecimal integer (using upper case letters)

With each of the above, the precision defaults to 1 if not specified.

C

S

€

single character
string, terminated by zero.

the argument is a double and is displayed as an exponential floating point
number. The number is printed using scientific notation, with one digit
before the decimal point. The number of digits after the point is
determined by the precision (see below). The precision defaults to 6 if not
given. The exponent is preceded by 'e’.

the same as e, except that the exponent is preceded by 'E’.

the argument is a double and is displayed without exponent. The precision
determines the number of digits printed after the decimal point, and this
defaults to 6.

uses e or f format, whichever is shorter,
uses E or f format, whichever is shorter.
the '%' character is printed.

(ﬂag) is one of -, '+, "#' or space. These have the following meanings:
left justify ‘the output
forces the sign of a number to be printed

?ace forces positive numbers to start with a space
with o (octal) conversions a leading zero is added
with x (hexadecimal), '0x’ or '0X" is added at the start
with floating point conversions (E, f, g, G) it forces a decimal point
to be printed

Note:

COMPILER 9-33

(width) is a decimal sumber which specifies the minimum field width for
the conversion, that is the minimum number of characters that will be
printed. If the number of characters resulting from the conversion is less
than this number, the field is padded with spaces (unless the first digit of
the width is a zero, in which case it is padded with zeros).

If the number of characters required is more than the width, the output is
printed in the minimum space.

If '+' is specified, the width is taken from the next argument.

(precision). A decimal point followed by a decimal number specifies the
precision of a floating point conversion, or the maximum field width for a
string. For the g and G conversions, the precision is the maximum number
of significant digits printed. For e, E, and f it gives the number of digits to
be printed after the decimal point. If the precision starts with a 0, the
output is padded with zeros.

If +' is specified, the precision is taken from the next argument.

(long) causes the argument to be taken as type long, if the conversion
character is o, U, x, X, i or d, otherwise it is ignored.

the version of printf supplied in the small library does not support

any of the floating point options.

Returns: the number of characters written. If an output error occurred, a
negative integer is returned.

putc

int putc(c,fp)

charc;

FILE +fp ;

Description: Standard, Small

The same as fputc. Writes a character, c, to the stream specified by fp.

Returns: the character, if successful, otherwise ERROR (-1) on error.

COMPILER 9-34

putch
void putch(c)
charc;

Description: Common, Small

Writes a character to the screen, even if stdout has been re-directed. Characters
with an ASCII value less than 32 are not displayed, but treated as control codes.
The following codes are recognised, others are not defined.

1 new line, unless the cursor is in column 1
7 sounds a beep

8 backspace

9 forward space

10 line feed

11 reverse line feed

12 clear current window
13 carriage return

18 clear to end of line
24 toggle inverse on/off
30 home the cursor

Returns; nothing,

putchar

int putchar(c)

charc;

Description: Standard, Macro
Writes a character to the stream stdout.

Returns: the character just written, or ERROR (-1) if an error occurs.

puts
int puts(s)
char *s ;

Description: Standard, Small

Writes the string s to stdout (without the terminating zero), followed by a
newline.

Returns: 0 if successful, otherwise non-zero. puts() returns ERROR (-1)
when an error occurs.

COMPILER 9-35

putw

int putw(x,fp)

FILE vp;

intx;

Description: Standard, Small

Writes a two byte integer to the file specified by the stream fp, using putc. The
number is output with the low byte first.

Returns: the last character output by putc, or ERROR (-1) in case of
error.

rand

int randy()

Description: Standard, Maths

Generates a pseudo random number in the range 0 to 32767.

Returns: a random number in the range 0 to 32767.
rdmatrix

void rdmatrix(c,buf)

charc;

char buf[8] ;

Description: Arnor C, Small

Returns the matrix for the character ¢ in the 8 byte buffer. The bytes returned
are the bit image data for each row of the character matrix, starting with the top
row. Within each byte, bit 7 is the leftmost pixel.

Returns: the matrix for the character ¢ in the 8 byte buffer.

COMPILER 9-36

read

int read(h,buf,n)

inth n;

char *buf ;

Description: Standard, Small

Reads n bytes from the file with handle 4 and stores them in the buffer buf.

Returns: the number of bytes transferred, ERROR (-1) if an error occurs.
0 indicates that the end of file has been reached.

rename

int rename(oldn,newn)
char *oldn, snewn ;
Description: Common

Changes the name of a file from oldn to newn. Both oldn and newn may contain
drive and path names, but both names must refer to the same disc.

Returns: 0 if the filename was successfully changed, otherwise ERROR
(-1) if the rename failed.

rewind

void rewind(fp)

FILE «fp ;

Description: Standard

Moves the file pointer, fp, to the start of the file. This is equivalent to
fseek(fp,0L,0).

Returns: nothing,

COMPILER 9-37

scanf
int scanf(format,argl, arg2 .)
char «format ;

Description: Standard

scanf is the analogue of prinif for formatted input. Characters are read from
stdin, interpreted according to the format specification, and stored in the
arguments, which must be pointers to appropriate variables.

The format string may contain the following:

@) white space characters (spaces, tabs and newlines). These are
ignored.
(if) other characters, except %, which are expected to match the next
non-white space character in input.
(uid) conversion specifications, which the following form:
%o*wic

*, w and f are optional.
* causes 'assignment suppression’. The corresponding input field will be
skipped without storing the result. There should not be a corresponding
pointer argument.

w (width) is a decimal number specifying the maximum number of
characters in the input field.

1 indicates that the argument is a pointer to a long, if the conversion
characteris d, i, o, u or x.

¢ (conversion character) is one of the following:
o octal integer. The argument must be a pointer to an int.
x hexadecimal integer. The argument must be a pointer to an int.
u unsigned integer. The argument must be a pointer to an unsigned.
d integer. The argument pointer must be a pointer to an int.
i integer. If it starts with Ox or 0X, it is taken to be hexadecimal. Otherwise

if it starts with a 0, it is taken to be octal. The argument must be a pointer
to an int.

COMPILER 9-38

e floating point number. The argument must be a pointer to a double.
f samease.

c single character. The argument must be a pointer to a char. This
suppresses the skipping of whitespace characters. To read the next non-
white space character, use %1s.

s string, The argument must be a pointer to a char array, large enough to
hold the string (plus the terminating zero byte).

[string with specified acceptable characters. Following the [’ is a string of
acceptable characters, terminated by 'J'. If the first character after [’ is
"1’ the characters which follow are considered not acceptable. The
argument must be a pointer to a char array, large enough to hold the
string (plus the terminating zero byte).

Returns: the number of items that were assigned, or EOF (-1) if the end of
file is reached, or an error occurs before the end of the format string is reached.

seldrive

int seldrive(dr)

intdr;

Description: Arnor C

Makes drive dr the currently selected drive.

Returns: 0 if successful, ERROR (-1) if an error occurred.
selwin

void selwin(window)

int window ;

Description: Arnor C, Small

Selects the specified window number, which is a number between 0 and 7. If
setwin has not been previously used with the specified window selected, the
window will cover the whole screen. The cursor position is retained separately
for each window.

Returns: nothing.

COMPILER 9-39

setcurs
void setcurs(col,row)
int col,row ;

Description: Arnor C, Small

Sets the cursor position to the specified column and row within the current
window. The top left of the window is position (0,0).

Returns: nothing,

setfcb

void setfcb (name,buf)
char sname ;

char buf[36] ;

Description: Arnor C, Small

This takes a filename and constructs a file control block ready for use with
BDOS file routines.

Returns: nothing,

setjmp
int setjmp(env)
jmp_bufeny;

Description: Standard, Small

Allows a 'goto’ between functions. sefjmp() saves the stack environment in the
variable env for later use by longimp(). setjimp() must be called with a particular
value of env before that value of env is used with Jongimp() and the function in
which setjmp() is called must not have returned before the corresponding
longimp() is used.

Returns: Zero.

COMPILER 9-40

setpr
void setpr(printer)
int printer ;

Description: Arnor C

Selects destination for prch. printer is a number representing the required
printer output, as follows:

1 PCW internal printer

2 Serial printer

4 Parallel printer

Returns: nothing,
settime
void settime(tod)

timeblock *tod ;
Description: Arnor C

Sets the system clock (using BDOS function 104). fod is a pointer to a structure
defined as follows:

ypedef struct

int date ; /*in days since January 1, 1978 */
char hour ;
char minute ;
char second ;
} timeblock ;

Returns: nothing,

setwin

void setwin(x1,y1,x2,y2)

intxLylx2y2;

Description: Arnor C, Small

Sets the window so that top left is (xLyI), and bottom -ight is (x2y2). The
co-ordinates used are absolute physical screen co-ordinates, top left of the screen

is position (0,0). The cursor is moved to the top left of the window.

Returns: nothing,

COMPILER 9-41

sin

double sin(x)

doublex ;

Description: Standard, Maths

Calculates the sine of the argument which is in radians.
Returns: the sine of the argument which is in radians.
sinh

double sinh(x)

doublex ;

Description: Common, Maths

Calculates the hyperbolic sine of the argument.

Returns: the hyperbolic sine of the argument.

sprintf

int sprintf(buff,form,args...)

char sform,*buff ;

Description: Standard

Writes a string to the memory buffer buff using the format string form and
inserting the arguments accordingly. See printf for further information on how
the format string is interpreted.

Returns: 0 if successful, ERROR (-1) if unsuccessful.
sqrt

double sqrt(x)

double x ;

Description: Standard, Maths

Calculates the square root of the argument, which must be non negative.

Returns: the square root of the argument.

COMPILER 9-42

srand

void srand(seed)

unsigned int seed ;

Description: Standard, Maths

Seeds the random number generator with seed. The initial default seed is 1.

Returns: nothing,

sscanf
int sscanf(buff,form,args...)
char «form, »buff ;

Description: ~ Standard
Reads a string from the buffer buff using the format string form, extracting the

arguments accordingly and storing them through the args pointers. See scanf for
information on how the string is interpreted.

Returns: the number of arguments extracted.
strcat
char »strcat(s1,s2)

char »s1,xs2 ;

Description: Standard, Small

Appends s2 to s1, terminating the result with a zero.
Returns: a pointer to s1.

strchr

char #strchr(s,c)

char s ;

charc;

Description: Common, Small

strchr searches the string s for the first occurrence of the character c.

Returns: a pointer to the character, or NULL (0) if not found.

COMPILER 9-43

strcmp
int strcmp(sl,s2)
char xs1,*s2;

Description: Standard, Small

Compares the strings s and s2.

Returns: 0, if equal, a negative value if s1 <s2, or a positive value if s1>52.
strcmpl
int strempl(s1,52)

char xs1, %52 ;
Description: Common

Compares the strings sI and s2, ignoring differences between upper and lower
case letters.

Returns: 0, if equal, a negative value if s1 <s2, or a positive value if 57 >52.
strcpy
char xstrcpy(s1,s2)

char xs1,%s2;
Description: Standard, Small
Copies the string s2 to s1.

Returns: a pointer to s1.

‘COMPILER 9-44

strcspn

int strespn(s1,52)

char xs1,%s2 ;
Description: Common

Evaluates the number of consecutive characters at the start of s that are not
contained within the string s2. See also strspn.

Returns: the number of consecutive characters at the start of s that are
not contained within the string s2.

strdup

char sstrdup(sl)

char »s1;

Description: Common

Allocates memory for a copy of sI using malloc and copies the string there.
Returns: a pointer to the copy.

strlen

int strlen(s1)

char *s1;

Description: Standard, Small

Evaluates the number of characters in sJ excluding the terminating zero.
Returns: the number of characters in 51 excluding the terminating zero.
striwr

char *striwr(s1)

char *sl;

Description: Common

Converts all upper case letters in 51 to lower case.

Returns: sl

COMPILER 9-45

strncat

char sstrncat(s1,s2,n)
char #s1,%s2;

intn;

Description: ~ Standard, Small

Appends up to n characters from s2 to s, terminating the result with a zero.

Returns: a pointer to s1.
strncmp

int strncmp(s1,s2,n)

char »s1,%s2 ;

intn;

Description: ~ Standard

Compares up to n characters of s with s2.

Returns: 0, if equal, a negative value if s1 <52, or a positive value if s1>52.
strncpy

char sstrncpy(sl,s2,n)

char xs1,xs2;

intn;

Description: ~ Standard, Small

Copies up to n characters from s2 to sl. If strlen(s2) > = n, 51 will not be zero
terminated.

Returns: a pointer to s1.
strpbrk
char xstrpbrk(s1,52)

char +s1,+s2;
Description: Common
Finds the first character in 51 that is in the string s2.

Returns: a pointer to the first character in 51 that is in the string s2.

COMPILER 9-46

strrchr

char xstrrchr(sl,c)

charc,*sl1;

Description: Common

Finds the last occurrence of the character ¢ in s1.

Returns: a pointer to the last occurrence of the character ¢ in s1.
strrev

char »strrev(s1)

char *s1

Description: Common

Reverses the order of characters in s1.

Returns: a pointer to sl.
strset

char xstrset(s1,c)

charc,*sl;

Description: Common

Sets all characters in 57 to the value of c.
Returns: a pointer to s1.

strspn

int strspn(s1,s2)

char xs1,%s2 ;

Description: Common

Evaluates the number of consecutive characters at the start of s/ that are
contained within the string s2. See also strcspn.

Returns: the number of consecutive characters at the start of sI that are
contained within the string s2. A value of 0 indicates that no substring was found.

COMPILER §-47

. strtod
double strtod(str,ptr)
char »str, *xptr;

Description: Common, Small
Converts the string str to a floating point number. Conversion stops at the first

inappropriate character, and if ptr is not NULL (0) then #ptr is set to point to
this character.

Returns: if no number is found, 0.0 is returned.
striok
char »strtok(s1,52)

char sl %52 ;
Description: Common

Looks for the next token in the string sI. A token is a sequence of characters
separated by one or more delimiter characters. The delimiter characters are
those contained in the string s2.

To find subsequent tokens, strfok must be called with NULL (0) as the first
argument. This will cause the search to resume after the previous token.

Note: The contents of s1 are changed.

Returns: a pointer to the start of the token (which will be zero terminated),
or if no token is found, NULL (0).

striol

long strtol(str,ptr,base)
char #str, »»ptr;

int base ;

Description: Common, Small

Converts the string str to a long integer. The string is assumed to hold the ASCII
representation of a number in base base. If base is zero, the base is derived from
the string: if it starts with 0x, base 16 is used, otherwise if it starts with 0, base 8 is
used, otherwise base 10 is used. Conversion stops at the first inappropriate
character, and if ptr is not NULL (0) then #ptr is set to point to this character.

Returns: if no number is found, OL is returned.

COMPILER 9-48

strupr

char xstrupr(s1)

char xsi;

Description: Common

Converts all lower case letters in 51 to upper case.
Returns: nothing,

tan

double tan(x)

double x ;

Description: Common, Maths

Calculates the tangent of the argument, which is in radians.
Returns: the tangent of the argument.

tanh

double tanh(x)

double x ;

Description: Common, Maths

Calculates the hyperbolic tangent of the argument,

Returns: the hyperbolic tangent of the argument.

COMPILER 95-49

time

void time(tod)

timeblock *tod ;

Description: Arnor C

tod is a pointer to a structure as defined in settime.
Returns: the time.

toascii

int toascii(c)

intc;

Description: Common, Macro

Takes any integer value and discards all but the low order seven bits making up
an ASCII character.

Returns: integer value of low order seven bits, or if already valid, returns
unchanged. .

tolower

int tolower(c)

intc;

Description: Standard, Macro

Converts ¢ to lower case if it was an upper case letter.

Returns: ¢, converted to lower case if it was an upper case letter,

otherwise, unchanged.

toupper

int toupper(c)

intc;

Description: ~ Standard, Macro

Converts ¢ to upper case if it was a lower case letter.

Returns: ¢, converted to upper case if it was a lower case letter, otherwise.
unchanged.

COMPILER 9-50

ungetc

int ungetc(c,fp)

intc;

FILE «fp ;

Description: ~ Standard, Smalt

Puts the character ¢ back into the input stream fp, where it will be read by the
next input operation on that stream. Only one character may be pushed back
between input operations.

Returns: ¢ if successful, or ERROR (-1) if unsuccessful.
ungetch

void ungetch(c)

charc;

Description: Common, Small

Returns a character to the console input,

Returns: ¢, if successful, otherwise ERROR (-1).
unlink
int unlink(name)

char sname ;

Description: ~ Standard, Small

Deletes the specified file.

Returns: 0 if the file was successfully deleted or ERROR (-1) if an error
occurred.

unwrchar

int unwrchar()

Description: Arnor C, Small

Attempts to read a character from the current cursor position.

Returns: character read, otherwise ERROR (-1).

CQOMPILER 9-51

version
unsigned version()

Description: Arnor C, Small

On a CPC6128 this returns the version number of the C run time system,

multiplied by 100.
On a PCW it returns the same, with 32768 added. Thus to test whether a
program is running on a PCW, use if (version() & 0x8000).

Returns: the version number of the C run time system, multiplied by 100,
on a CPC6128. On a PCW it returns the same, with 32768 added.

wrchar
void wrchar(c)
charc;

Description: ArnorkC, Small

Writes a character to the screem, even if stdout has been re-directed. All
characters are displayed, control codes are not interpreted.

Returns: nothing.
write

int write(h,buf,n)

inth n;

char *buf ;

Description: Standard, Small

Writes n bytes from the buffer buf to the file with handle /# and stores them in the
buffer buf.

Returns: the number of bytes transferred, or ERROR (-1) if an error
occurs.

COMPILER 9-52

wrmatrix

void wrmatrix(c,buf)
charc;

char buf(8] ;

Description: Arnor C, Small

Sets the matrix for the character ¢ as passed in the 8 byte buffer. The bytes
passed are the bit image data for each row of the character matrix, starting with
the top row. Within each byte, bit 7 is the leftmost pixel.

Returns: nothing.

_exec

void _exec(str)

char *str;

Description: ~ Standard, Small

Takes a pointer to a string, and passes it to the run time system command line
interpreter.

Returns: never returns and is used for chaining other programs.
_exit

void _exit(ecode)

int ecode ;

Description: ~ Standard, Small

Does not flush buffers but returns immediately from the program. ecode is
normally a zero to indicate a normal end of program and non-zero to indicate an
error.

Returns: doesn't return.

COMPILER 9-53

_fchret

int _fchret(c,handle)
charc;

int handle ;

Description: Arnor C, Small

Puts back the character c to the file.

Returns: 0 if successful, ERROR (-1) if an error occurred.
_feof

int _feof(handle)

int handle ;

Description: Arnor C, Small
Tests whether end of file has been reached.

Returns: 0 if not end of file. OxlA4 is returned if at soft end of file, a
different non-zero number if at hard end of file.

_finch
int_finch(handle)
int handle ;

Description: Arnor C, Small

Reads a character from the file. Programs may need to check for Ox14, the soft
end of file character.

Returns: EOF (-1), if hard end of file reached, otherwise the character
read.

_foutch

int _foutch(c,handle)

charc;

int handle ;

Description: Arnor C, Small
Writes a character to the file.

Returns: 0 if successful, ERROR (-1) if an error occurred.

COMPILER 9-54

_ftell

long _ftell(handle)

int handle ;

Description: Arnor C, Small

Evaluates the current file position as a long integer.
Returns: the current file position as a long integer.
_getlim

char *_getlim

Description: Arnor C, Small

Evaluates the lowest free memory address. See _getsp.

Returns: the lowest free memory address.

_getsp
char *_getsp()

Description: Arnor C, Small

Returns the highest free memory address (below the lowest extent of the stack).
This routine is provided for use of dynamic memory allocation functions, such as
malloc and will not normally be required.

Returns: the highest free memory address.

_putlim

void _putlim(address)

char xaddress ;

Description: Arnor C, Small

Sets the lowest free memory address. This function should only be used to raise
the memory limit and then only if absolutely necessary (such as in a function like
malloc).

Returns: nothing,

COMPILER 10-1

10. THE ARNOR C IMPLEMENTATION

This section gives implementation specific information, and documents any
variations from or enhancements to the Kernighan & Ritchie standard. The
section numbers correspond to those in the "C Reference Manual" section in
K&R.

1. Introduction

This implementation is for CP/M Plus running on the Amstrad PCW8256/8512
and CPC6128.

2.1 Comments

Comments may not be nested.

2.2 Identifiers

Identifiers may be any length, but only the first eight characters are significant.
The first character must be a letter or the underline character, but the remaining
characters may be letters, numbers or the underline character ’_'. Spaces are not
permitted. Upper and lower case are treated as being different.

Identifiers are split up into the following groups, between which there are no
possible clashes.

) Labels
Eii) Elements of structures / unions
i) Global variables
Typedef names
Structure / union tags
(iv) Local variables / parameters

In the case of local variables, a declaration of a particular variable causes any
previous uses of that identifier to become inaccessible until the scope of the local
variable expires.

COMPILER 10-2

2.3 Keywords

auto double int struct
break else long switch
case extern register typedef
char float return union
continue for short unsigned
default goto sizeof void

do if static while

2.4.3 Character constants

The following character constants are provided:

(a) Mentioned in K & R
\n newline (stored as 10)
\t tab
\b backspace
\r carriage return
\f form feed
\\ backslash
\' single quote

\ddd octal constant
\0 null character

(b) Additional
\xhh hexadecimal constant
\c conditional newline (only if not at start of line)
\v vertical tab (reverse line feed)
\" double quote
2.6 Hardware characteristics

See section 8.2 (type specifiers).

COMPILER 10-3

7 Expressions

Division by zero causes a run time system error, and execution of the program
will be terminated. Floating point exceptions are handled by the library function
'matherr’.

8.1 Storage class specifiers

Register is recognised and treated as auto.

8.2 Type specifiers

The following combinations of type specifiers are allowed (brackets denote
optional clauses) :-

type storage range (approx.)
char 1 byte 0to 255

int 2 bytes -32768 to 32767 .
short (int) 2 bytes -32768 to 32767
long (int) 4 bytes -(2131) to21731-1
unsigned (int) 2 bytes 0 to 65535
(long) float 5 bytes -1e38 to +1e38
double . Shbytes -1e38 to +1e38
struct -

union -

<typename> -

<typename > refers to a user defined type; typedef is fully implemented.

The provision of a type specifier is optional in a global declaration or a local
declaration where no ambiguity is possible. The default type is integer. Types
double and float have the same precision.

8.5 Structure and union declarations

Bitfields are not implemented.

COMPILER 10-4

8.6 Initialisation

Initialisation of globals/locals is as described in K&R. Attention is drawn to what
constitutes a 'constant expression’ in the case of global initialisation, the compiler
must be able to evaluate the constant expression to a (possibly relocatable) value
at compile time of that module. Consider the following global initialisation:-

int ptrdiff = &a - &b;

This is illegal if either a or b is external - since their addresses cannot be
determined - but is valid if a and b are defined in the same module as the
declaration of ptrdiff.

Initialisation of multi-dimensional arrays is extended so that more than one array
bound may be omitted. For example the declaration :-

int arr[][] = {{1,23}, {456}, {7}, {} };

is allowed, and is taken to declare an initialised array of size arr[4][3].

10 External definitions

References to functions that have not yet been defined or declared are taken to
be references to external functions returning integers. Thus if a function is of
storage class static, or it returns a value other than integer, it must be defined, or
at least declared, before it is referenced in a module. In case of static functions
the function must be defined before use. If this is not done the function will be
coerced to be extern.

12.2 File inclusion

#include "filename" looks ONLY on the current drive
#include < filename> looks on ALL drives

Limits

arguments in command tail
number of files open
number of streams open
line length

length of string literal
number of macro arguments

COMPILER 10-5

35

16

20 (if standard streams unchanged)
300

32767

10

THE EDITOR

EDIT 1-1

1. INTRODUCTION

The Arnor Program Editor is a full implementation of the program mode of
the PROTEXT word processor and provides, amongst many other advanced
features, facilities to edit two files at the same time and to transfer text between
the two files.

Facilities are provided to copy, rename and delete files, as well as to format
and back up discs, all without having to leave the editor, or lose the contents of
any files in memory.

Screen output may be spooled to a file on disc, or redirected to the printer if
required. Another special feature of the editor is its ability to carry out sequences
of commands by means of EXEC files. These are special text files which may
contain text, commands, or a combination of both, which will be treated as if they
were being typed in at the keyboard.

Utility programs are provided to enable the editor to be configured to suit
individual users preferences and these settings may be saved and will be used
automatically on all future occasions if required.

Listed below is a summary of the conventions used in the manual to describe
the various types of commands used in the editor:

a). Edit mode commands

ALT-M means the key marked 'ALT’ and the key marked 'M'.
Wherever a hyphen is used between them, it means that the
first key should be held down whilst the second key is pressed.
Most of the editing commands take this form.

ALT-VT means that the "ALT' and "V’ keys should be used as described
above, then released and the "T" key pressed. Note that there is
no hyphen between the 'V’ and the "T".

ALT-SHIFT-H means that all three keys should be pressed at the same time.
This sort of command, which requires more than two keys to
be pressed at a time is rarely used and at least two of the keys
are always adjacent to each other.

ALT-@ means that the '"ALT' key and the key which has the '@’ on it
are pressed together. It does NOT mean that SHIFT is
required as well. The ‘@' is merely being used for ease of
remembering its function.

EDIT 1-2

b). Command mode commands

Command mode commands are always shown in upper case, though when
they are being entered into the computer, they may equally well be entered in
upper or lower case. Similarly, when entering filenames to LOAD or SAVE a
file, even though they may be shown in upper case, lower case is acceptable and
the editor will automatically convert them to upper case if required.

c). Key variations for the CPC6128

There are a number of differences between the keyboards of the PCW
computers and the CPC computer. Throughout this section of the manual PCW
key names are the ones which are used, rather than cause confusion by listing
both keys on all occasions.

The following keys are direct equivalents:

PCW key CPC key
STOP ESC

EXIT ESC

ALT CONTROL
DEL~»> CLR
<DEL DEL

There is no direct equivalent to the EXTRA key, but for most purposes,
CTRL-0 (zero) serves the same purpose.

Any other variations, where, for example, there is no directly equivalent key
on the CPC6128, are noted at the relevant places.

EDIT 2-1

2. EDIT MODE

Throughout this part of the manual, the standard editor command keys are
described. The PCW computers have a number of 'special’ keys on the right
hand side of the keyboard and these have been configured to correspond to their
originally intended uses as far as possible, which in most cases is merely a
duplication of the equivalent editor command. It should, however, be noted that
due to the different methods used by the editor for moving, copying and deleting
blocks of text, there is some variation in the way that the CUT, CAN and COPY
keys are used.

A complete summary of both types of command is given in an appendix.

Note: The 'NUM LOCK' facility provided with the PCW computer, obtained by
pressing ALT-RELAY, is not available with the editor. It has been disabled, as
accidental use of the option, which changes the use of the cursor and other keys
into numeric keys, can be very confusing, as the cursor keys would no longer
function as expected.

Full use is made of the cursor keys during editing and when used in
conjunction with SHIFT, or ALT, the effect becomes increasingly greater. For
example: Using the right cursor key on its own will move the cursor one
character at a time. Using it with the SHIFT key will move a word at a time,
whilst with ALT, it will move to the end of the line.

Similarly, the commands to delete make use of the two DEL keys, which on
their own will delete one character, but when used with SHIFT will delete a word
and with ALT will delete to the beginning or end of the line.

a). Editing

Once the editor has been loaded, two lines containing information about the
state of the program will be seen at the top of the screen. These are the 'Status
lines', the contents of which will be explained later. There is also a thin horizontal
line, which always marks the end of the text and about two thirds of the way
down the screen is another, broader, line containing further information.

At this stage the program is still in Command Mode, which is described in
detail in the next chapter, but pressing the STOP key will put the program into
Edit Mode, which is the mode used for all entry and correction of text. The line
two thirds of the way down the screen will disappear, leaving the lower part of
thedscrecn clear. Pressing the STOP key at any time will return to command
mode.

EDIT 2-2

b). On screen help

There are two distinct types of 'on screen help’ available. One is for help
whilst in edit mode and the other for help in command mode. Full details on the
Command mode help are given in the chapter on 'Command mode’.

At the top of the screen, on the status line, will be found the message
'ALT-H for Help'. Pressing ALT-H at any time whilst in edit mode will turn on a
help panel at the bottom of the screen. If required this may be left permanently
on, but once some degree of familiarity with the editor has been attained it would
normally only be turned on when information about a particular command was
required.

Pressing ALT-H subsequently will display further panels of help information.
When the last panel is reached, the display will repeat from the start again.
Pressing ALT-V B will move backwards through the help panels.

Pressing ALT-V H will turn the help panel off at any time and restore
editing to the full screen.

Note: In order for help to be available, the files called AEDIT.HLP and
ACOMMAND.HLP must be available on one or other of the drives. In the case
of the PCW, they would normally be present on drive M, having automatically
been transferred to drive M as part otP the 'Start up’ procedure. CPC6128 users
would normally need to have copies of these files on their text disc, or the start of
day disc in one of the drives.

c). Entering text

Once in edit mode a flashing cursor is positioned beneath the status lines and
anything that is typed at the keyboard will appear on the screen at this position
and the cursor will be moved forward one position.

Any mistakes made whilst typing, which are noticed at the time, may be
corrected by pressing the €« DEL key, which will cancel the last key pressed.

The cursor can be moved around the screen by pressing the four cursor keys.
By using these keys, text may be entered at any position. The cursor moves one
line or column for each press of a cursor key. Holding a cursor key down will
make the cursor move continuously - release the key and the cursor will stop.

The cursor cannot be moved past the end of text (the thin horizontal line on
the screen). To position the cursor further down, the end of text must be moved
down by positioning the cursor at the end of the text and pressing RETURN as
many times as required.

EDIT 2-3

d). Upper and lower case

Initially the letter keys produce lower case letters, unless SHIFT is pressed at
the same time. If SHIFT LOCK or CAPS LOCK is pressed, upper case letters
are always produced, and this is indicated on the status line.

Note: The Amstrad PCW computers are slightly unusual in having a SHIFT
LOCK and no CAPS LOCK key. When SHIFT LOCK is on, all the characters
on the upper part of those keys which have more than one character on them will
also be selected. Caps lock is selected by pressing ALT-ENTER.

Note: On the CPC6128, SHIFT LOCK may be obtained by pressing CONTROL
and CAPS LOCK together.

The editor has two commands which change the case of a letter. To make a
letter upper case, press ALT-/ when the cursor is on the letter. This command
only affects letters, so the cursor can be moved quickly over a line to convert all
letters to upper case by holding down ALT-/. Similarly, ALT-. (point) will
convert upper case letters into lower case. (CPC6128 equivalent: CTRL-\).

e). Deleting and inserting

The ability to move the cursor around, permits the correction or alteration of
text anywhere on the screen. The cursor should be positioned on the letter to be
changed and the DEL-> key pressed. This will remove the letter at the cursor
position, and move the rest of the line to the left. As many letters as required can
be deleted in this way. If the new letter is now entered it will appear on the
screen and the rest of the line will move back to the right. Alternatively, pressing
<DEL will remove the character to the left of the cursor and the text will again
move to the left to fill the gap. Repeated pressing of either DEL key will cause
further characters to be deleted.

If extra text is to be inserted, the cursor should be positioned where the first
new character is to be added and the new text entered.

To insert a new blank line into the text, ALT-I should be used. The cursor
will remain where it is and all text from the current line to the end of the
document will be moved down a line.

Just as a character can be deleted, so can a word. Pressing SHIFT and
DEL-> when the cursor is at the start of a word will make the word disappear. If
this is done when the cursor is in the middle of a word, only that part of the word
at and to the right of the cursor position will be deleted.

EDIT 2-4

Similarly, pressing SHIFT and <-DEL will remove the word to the left of the
cursor, or if positioned in the middle of a word, the characters to the start of the
word.,

ALT-<-DEL will delete all text from the character on the left of the cursor to
the start of the line and ALT-DEL-> will delete all text from the cursor to the
end of the line. ALT-E also deletes everything from the cursor position to the
end of the line. (CPC6128 users: only CTRL-E is available).

ALT-CAN will delete the whole line. The line is removed from the document
and the remainder of the text moved up a line. (CPC6128 equivalent:
CTRL-CLR).

Note: On the PCW, pressing ALT-<DEL followed by ALT-DEL-> will delete all
the text from a line, but will not remove the empty line from the text, unlike
ALT-CAN, which will remove the blank line as well.

f). Swapping two characters

A common typing mistake, especially when typing quickly, is to type two
letters the wrong way round, e.g. 'wrod' instead of 'word’. The ALT-A (Alternate
characters) command will put this right. The cursor should be positioned on the
first of the two offending characters (on the 'r’, in the above example) and
ALT-A pressed. The two characters will then be exchanged.

g). Un-deleting all or part of a line

The editor maintains a buffer which always contains the most recently
deleted section of text. If a line or part of a line, more than three characters long,
is deleted, the deleted text will be saved in the buffer. If a section of text has been
accidentally deleted, it may be restored by pressing ALT-U.

This command can also be put to good use for moving lines or parts of a line
to a different position in the text, though this is not the purpose for which it is
really intended. The text to be moved should be deleted using one of the word or
line delete commands and the cursor moved to the position in the text where the
deleted text is to be placed. Pressing ALT-U will then restore the text at the new
location.

Note: Only the text removed by the last delete command will be stored in the
buffer and any previous contents of the buffer will be lost. It is therefore only
possible to un-delete a section of text until such time as any other section of text
1s deleted.

EDIT 2-5

h). Insert and Overwrite mede

Initially the editor, by default, is in insert mode and the word 'Insert’ is
displayed on the status line at the top of the screen to indicate this. This means
that when text is typed, the rest of the text on the line is moved along to the right
to make room. This is the mode that is preferred by most people for text entry.

Pressing ALT-TAB will change the status line to 'Overwrite’. Selecting
overwrite mode can make certain editing jobs easier. The effect of using it is that
if the cursor is positioned over an existing piece of text and new text typed in, the
existing text will be replaced by the new text, unlike insert mode, where the
existing text would be moved to the right.

If an extra character needs to be inserted whilst in overwrite mode (for
example if replacing a word by a longer word), this can be done by pressing ALT
and the space bar which will move the text to the right to make room.

i). Moving the cursor more rapidly

So far the cursor has been moved by a character at a time, but there are also
various ways to move the cursor more quickly. These are as follows:

(a) Pressing SHIFT—> or SHIFT-¢- will make the cursor jump a word to the
start of the next (or last) word. This feature is useful for moving more quickly
to a word which needs correction.

(b) Pressing ALT-¢- or ALT->. This moves the cursor to the beginning or end
of the line.

(c) Pressing SHIFT-RETURN or ALT-RETURN. This moves the cursor to the
beginning of the next line, without causing a new line to be inserted, which
would happen if the RETURN key was used on its own.

(d) Pressing ALT-? or ALT-Y. This moves the cursor up or down rapidly. By
holding down ALT-4 or ALT-V the text can be rapidly scanned. The text will
scroll by nearly a screenful at a time, but with a few lines overlap so that the
context may more easily be followed. Similar functions are performed by
ALT-Q and ALT-Z, except that a full screen is scrolled each time, with no
overlap of text. :

EDIT 2-6

(e) Pressing ALT-[or ALT-] moves the cursor to the beginning or end of the
text resident in memory at that time. Pressing the same key a second time
will move the cursor to the beginning or end of the complete document.

(f) Pressing ALT-@ [or ALT-@] will move to the opening or closing block
markers, if set. See 'Block commands’.

() Pressing ALT-F or ALT-E] will go to the next or previous marker in the
document. See 'Place markers’.

Note: The [] and [] keys are the special plus and minus keys located either side
of the space bar on the PCW. CPC6128 users should use CTRL-@ + and
CTRL-@ -.

(h) Pressing ALT-L moves the cursor back to the last position. This is
particularly useful if the cursor has accidentally been moved to another part
of the text by using an incorrect command. ALT-L will return the cursor to
the position where it was before the incorrect move was made. It will on]y
have any effect if the cursor has been moved with one of the 'jump’
commands. Moving the cursor a single space at a time will not affect the use
of ALT-L and it can still be used to return to the original position from
which the last jump was made.

With care, this facility can be put to good use, by permitting a jump to
another part of the text, where one or two alterations or additions may be made,
before pressing ALT-L to return to the original place in the text.

i). Moving to a specified line or column number

Pressing ALT-G will result in a message appearing on the status line,
requesting 'L(ine) or C(olumn) number’. Entering the required line number will
move the cursor to that line. Prefixing a number with 'C’ will result in the cursor
moving to the appropriate column.

EDIT 2-7

k). Place markers

A place marker can be put anywhere in the text and is similar in use to a
book marker. Ten place markers can be set, numbered 0 to 9. A place marker is
set by pressing ALT-@ followed by the number. When a marker has been set, it
will appear in the text as the number in inverse and will be shown on the status
line, so that by looking at the status line it is easy to see which markers are
available. Once a place marker has been set, it can easily be returned to at any
time by repeating the ALT-@ command with the same number.

In addition to using ALT-@ and the number to find a place marker, it is
possible to jump from one to the next in the document by using ALT-[# to move
on through iie document, or ALT-5} to move backwards. Using these commands
will find the next or last marker in the text. Both types of markers (place, and
block) will be found. They are not treated numerically, but are found in the order
in which they occur in the document. (CPC6128 equivalents: CTRL-@ + moves
to next marker, CTRL-@ - moves to previous marker).

As an example of the use of a place marker, suppose a long file is being
edited and something needs to be added at the top of the text. A place marker
can be set and ALT-[typed, to move to the top of the text, and after making the
addition, ALT-@ and the place marker number used to move back to the place
marker.

Note: Place markers are saved with the text and will be restored when the file is
reloaded. If one file containing markers is merged into another, duplication of
markers may occur. The duplicated markers can be removed in the normal way.

1). Scrolling

When the text fills the entire depth of the screen, typing further text will
cause the screen to scroll up. That is, the top line will disappear and the rest of
the screen will move up one line to make room for a new line at the bottom of
the screen.

In the same way the text will scroll if the cursor reaches the bottom of the
screen but there is more text to come, or reaches the top of the screen when the
text has previously scrolled. This is known as vertical scrolling, and is essential for
editing text that is longer than a few lines.

EDIT 2-8

The editor has commands to force the screen to scroll either up or down at
any time. This is done by pressing SHIFT-4 or SHIFT-. The cursor will stay on
the same line, but the whole text will scroll by one line. This feature is useful if a
line is to be edited and it is desirable to see the text beneath or above.

There is another form of scrolling, called horizontal scrolling, which happens
automatically when the cursor is moved beyond the right hand limit of the screen.
If this is done the text will scroll to the left. This means that the text on the left of
the screen will start to disappear as the cursor is moved further to the right of the
screen. Horizontal scrolling allows text to be entered in lines that are longer than
the screen width. This can be confusing at first and so is best avoided initially. If
horizontal scrolling occurs, any of the commands which move the cursor to the
left may be used to scroll the text back, or SHIFT and RETURN may be pressed
together, which will return the cursor to the start of the next line.

Note: When horizontal scrolling takes place, the screen moves across a number
of spaces at a time. This figure may be changed with the CONFIG utility but it
should be borne in mind that the smaller the movement, the more it will slow
down the operation of the editor.

m). Splitting and joining lines

Lines will often require splitting, or joining together. This is very easy in the
editor. There are two different methods of doing this, depending on whether
"Insert’ or 'Overwrite’ mode is in operation.

To split a line whilst in Insert mode, the cursor should be moved to the
character which is to be the first on the new line and RETURN pressed. To join
two lines, either move to the end of the first line and press DEL->, or move to
the start of the second line and press «DEL. The text on the second line will
then move up and join onto the end of the text on the first line.

If in overwrite mode, ALT-# will split the line at the cursor and ALT- + will
join the next line to the end of the current line.

EDIT 2-9

n). Tabs

The TAB key may be used at any time to indent text and align columns of
figures or text. Use of the TAB key to position characters, rather than inserting
spaces in the text, is recommended for a number of reasons.

Firstly, it provides a quick and efficient method of neatly presenting source
code, but another benefit is that a single tab in the text can take the place of a
number of space characters, making the resultant file shorter.

Secondly, it is possible to rearrange the spacing of columns at any time,
simply by re-specifying the tab spacing required.

Tab markers are set at every eight columns by default, but this may be
changed at any time by use of the command, "'TAB’, from command mode. This
command is fully described in the chapter on command mode. One thing which
should be remembered is that any special tab settings will be lost when the
document is saved and next time it is loaded, the settings will be the default ones
again.

 If it is felt desirable to always use a special set of tab spacings, then these
may be saved and automatically be loaded by use of the AUTOEXEC file
feature of the editor. Full details of how to create a suitable EXEC file are given
in the section on "EXEC files'.

EDIT 2-10

EDIT 3-1

3. BLOCK COMMANDS
a). Block commands

The editor allows any section of text to be moved or copied to any other part
of the text. This is often called 'cut and paste’ editing. A block of text is any
continuous section of text. It may be of any length and may start at any position
in the document and finish at any position. When in block editing mode, all text
between these two points will be manipulated in whatever way is chosen.

b). Defining a block

The first requirement is that the block of text is marked with block markers.
The cursor should be moved to the start of the section of text and SHIFT-COPY
pressed (alternatively SHIFT{H can be used and may be found more
convenient). This will set a block marker. The marker will be indicated on the
screen by an inverse video square bracket. The cursor should then be moved to
the end of the section and SHIFT-COPY pressed again, to set a second marker.
The block has now been defined. An opening square bracket is the start marker,
a closing square bracket the end marker. When markers are defined, this will be
indicated on the status line, where the message 'No markers set’ will be replaced
by "Markers [|', showing that both the start and end markers are set.

The markers can be set in either order, and can be at any position in the text.
The first marker set will be displayed as an opening bracket, but if the second
marker is positioned earlier in the text than the first marker, this will change to a
closing bracket. If the marker is put in the wrong place, pressing SHIFT-COPY
again while the cursor is still on the marker will remove it. Either or both block
markers can be cleared at any time, by pressing ALT-K or CAN. Often a block
will consist of a number of complete lines. To define a block like this, the first
marker should be positioned at the start of the first line, and the second marker
at the start of the line following the last line of the block.

If an attempt is made to set a marker when both are already set, a beep will
sound and an error message will be displayed on the status line. Pressing STOP
will resume editing and ALT-K can be used to clear the markers.

¢). Moving or copying a block

Once a block has been defined, it can be moved to any point in the text
simply by moving the cursor to the required position and pressing ALT-M or
alternatively on the PCW, the PASTE key. The markers will move with the text.
The cursor must not be within the block at the time; if it is an error message will
be displayed on the status line. Pressing STOP will return to edit mode and the
cursor can be moved to the correct position.

EDIT 3-2

The block can also be copied, leaving the original text intact. This is done by
pressing ALT-COPY or just COPY (PCW only). The markers will be moved
with the block, which makes it easy to see clearly where the new copy of the
block is and also to copy the block again if required. The cursor must not be
within the block. (CPC6128 equivalent: CTRL-COPY).

d). Deleting a block

The section of text to be deleted must be defined in the usual way. Pressing
the CUT key will delete the block. If the block is larger than a certain size (see
below) a beep will sound and a warning message will be displayed on the status
line, requesting confirmation that the block is to be deleted. The block will only
be deleted if "Y' is selected. (CPC6128 equivalent: CTRL-DEL).

e). Un-deleting a block

If a block of text is accidentally deleted, it may often be recovered by use of
the ALT-U command. When text is deleted, the editor retains the deleted block
in a buffer and ALT-U will restore it to the document.

Note: By default the buffer will hold 512 characters, but this can be changed by
the user through the use of the configuration program CONFIG.COM. If a block
of text which is too large for the buffer is to be deleted, a warning will be given,
with the option to continue. If "Y' is selected, the block will be deleted and the
buf(fﬁr will be filled with as much of the text as it can hold and the remainder will
be discarded.

Note: A block can only be restored until such time as further text is deleted, after
which time the buffer will contain only the most recently deleted text.

EDIT 4-1

4. FIND AND REPLACE

Note: CPC6128 users shiould note ihat there is some variation in the use of keys
in this section as the CPC6128 does not have the special [and [keys. The
COPY key serves the same purpose as the [F key and CTRL-@ @ is the
substitute for . SHIFT-f2 and CTRL-f2 generate REPLACE and FIND
respectively instead of the PCW EXCH and FIND keys.

Two functions, FIND and REPLACE are provided, which permit searching
through text for any string of characters and, if specified, replacing them with a
second string,

Pressing FIND or EXCH whilst in edit mode will cause the editor to enter
command mode, with a request for the ‘String to find'. Alternatively, typing
FIND or REPLACE from command mode will have the same result.

The string to find is requested first, followed by the replacement string (if the
REPLACE option was selected). After entering the string or strings, one or
more of a number of options may be selected by typing the appropriate letters
one after another (in any order). Each option is either a single letter abbreviation
or a number (these are listed on the screen). Pressing RETURN on its own will
cause no options to be selected.

The options available are as follows:

G Global search. If selected the whole text is searched from the start,
otherwise only the text from the current cursor position to the end of the
text.

C Case specific search. If selected all letters will only match letters that are
the same case, otherwise either capitals or lower case letters will be treated
as being the same.

W Find string only if it appears as a complete word. For example to find
occurrences of the word 'and’ without finding 'hand’, "England’ etc.

B Search backwards. Searches from the end of the document to the beginning.

A Find or replace all strings automatically. REPLACE will change all
occurrences of the string with the new one, without requesting confirmation
and return a figure of the total number of replacements made. In the case of
FIND being used, it will simply return the total number of occurrences of
the string,

EDIT 4-2

n Find or replace the nth occurrence. n should be a number between 1 and
255. This option has a number of uses, but a simple example might be to
check that every set of quotation marks has a matching closing set, in which
case FIND would be used to find ™ and "2G' would be specified as options,
to search globally for every second occurrence.

If no options are selected the search will be forwards, from the current
cursor position to the first occurrence of the string, ignoring the case of letters,
finding the string even if it occurs as part of a longer word, and asking for
confirmation before replacing a string,

Any number of wildcards are allowed in the string. A wildcard is a character
that matches any character in the text, except the return character. It is entered
in the string by typing a question mark (?). A tab character may be entered
simply by pressing the TAB key. It is displayed as a right pointing arrow.

There are various characters that cannot be entered directly, but that it may
be useful to include in a search string. Provision has been made for including
these in a string, by means of an 'escape character’. The 'escape character’ (!)
should be typed in, followed by a symbol, number or letter, as appropriate.

The full list of characters that are entered by this means is:

question mark 1?

exclamation mark "

return R

search for code ! <number >
a). Using FIND

Once the string and any options have been selected, edit mode is entered
and the cursor placed on the first character of the first occurrence of the string.
To find the next occurrence of the string, the [key, positioned to the left of the
space bar, should be pressed. This need not be done immediately. Editing can be
carried out first and when complete, the search may be continued by pressing .

At any stage, [=] can be used to search back towards the beginning, if necessary.

EDIT 4-3

As with other commands, FIND can be used by typing the string on the same
line as the command name, followed by any options. Thus the command
'"FIND word GWC' will search for the string 'word’ from the start of the
document, selecting only those occurrences where it is a complete word with all
letters in the same case as specified. If no options are specified, the default
options will be used.

If the A option is selected, the editor will return the total number of
occurrences found, when the search is complete.

b). Using REPLACE

The cursor will be positioned on the first character of the string and a
message, 'Replace (y/n)?',will be displayed on the status line. Pressing "Y' will
replace the string with the new one and the cursor will move to the next
occurrence. Pressing 'N' will leave the string untouched and move the cursor to
the next occurrence. Alternatively STOP may be pressed and normal editing
resumed. At a later time, [f] may be pressed to resume the find and replace
operation. Alternatively [£] may be used to resume the search in the reverse
direction, which may be found useful if an occurrence of the string is passed over
by pressing ‘N’ in error.

If option A is selected then all occurrences of the string are replaced without
prompting and the program will remain in command mode. When complete a
count of the total number of changes made will be displayed.

Examples

1. To find all occurrences of the word 'text’ in lower case only, starting at the
cursor position.

FIND string: text
Options: CW

2. To convert all occurrences of 'rom’ or 'Rom’ to 'ROM’, asking for
confirmation of each replacement.

FIND string: rom
REPLACE with: ROM
Options: GW
3. To insert a blank line after each line.

REPLACE ! L. AG

EDIT 4-4

EDIT 5-1

5. COMMAND MODE
a). Introduction

All entry of text is carried out in Edit mode, but in order to carry out
operations such as saving, loading or printing, 'command’ mode must be entered.
This can be done at any stage of editing simply by pressing STOP. Pressing
STOP a second time will return to edit mode.

When STOP is pressed, the bottom part of the screen will be cleared and the
command mode banner line will appear, displaying the editor version number.
The cursor will be positioned next to a '>' symbol. This symbol is the 'command
prompt’ and indicates that commands may be entered. The currently selected
drive is indicated by the letter prefixing the > and if any 'group’ other than
group 0 is selected, this number will also be indicated.

The output of all commands will be displayed in this window at the bottom of
the screen. Many commands produce more output than will fit in the window in
which case the screen-will automatically scroll as necessary.

(i) Command HELP

Command mode HELP is available at any time. Typing HELP will give a list
of the available subjects, such as FILES, PRINT, DISC, and EXTERNAL.
Typing HELP, followed by the subject will list all the commands relevant to the
subject. For example: HELP DISC, (or H D) will list all disc utility commands.

(ii) Command entry

Before studying the individual commands in detail, there are a number of
points connected with the entry of commands which are of general interest and
are listed below.

The editor has a special feature which permits the entry of commands in a
simplified fashion. For example, to save a text file it is only necessary to type
'SAVE' and the editor will prompt with 'SAVE filename:' and wait for entry of a
name for the text file.

Alternatively, the parameters of a command may be entered on the same line
as the command name, e.g. '"LOAD source', 'SAVE prog'. In this way the
commands may be used without the prompts for the parameters appearing,
which is often more convenient when familiar with the syntax of the commands.

EDIT 5-2

Note: All commands which require a parameter will prompt for them if the
command is used on its own. Commands which have optional parameters require
these to be entered at the same time as the command.

The editor provides a sophisticated line editing facility which is in operation
whenever commands are being typed in. If a mistake is made the cursor can be
moved back and the mistake corrected in the same way as in edit mode. The
following editing commands are available in command mode:

PCW8256/8512 CPC6128
<« <« Move cursor left one character.
> > Move cursor right one character.
ALT-¢« CTRL-¢ Move to start of line.
ALT-—> CTRL-> Move to end of line.
DEL~> CLR Delete at cursor.
<DEL DEL Delete before cursor.
ALT-A CTRL-A Alternate characters.
ALT-«<DEL Delete to beginning of line.
ALT-DEL~> CTRL-E Delete to end of line.
ALT-TAB CTRL-TAB Switch between insert and overwrite modes.
CAN CLR Clear screen (if cursor at start of a line)
STOP ESC Abandon entry of current command.

Pressing COPY or [H] when the cursor is at the start of a line recalls the last
command line used that was 4 or more characters in length, and positions the
cursor at the end of the command. This has a number of uses, such as carrying
out multiple saves of the same file, or repeating a load command which failed
because the wrong disc had been inserted. Short commands such as 'A’, "CAT’,
'SW' do not affect the command recalled.

In addition, the editor provides a 'copy cursor’ facility when in command
mode. If the SHIFT key is held down and one of the cursor keys used, a second
cursor will appear and move according to the cursor keys. If this is positioned
over a piece of text, the SHIFT key released and the {] or COPY key pressed,
the characters which are underneath the 'copy cursor’ will be copied down to
where the original cursor is positioned. Text may be copied from anywhere on
the screen. This is a very convenient method of recalling commands which have
been used previously, but can not be recalled by the method described in the
previous paragraph because subsequent commands have been issued.

EDIT 5-3

(iii) Abbreviations

Many of the commands can be abbreviated. For example, there is no need to
type 'LOAD’ in full, typing 'L’ will serve the same purpose. Similarly 'S’ for
'SAVE' and 'P’ for 'PRINT’. A full list of the commands, abbreviations and their
parameter syntax, is given later in this chapter and in an appendix.

(iv) The current filename

After a file has been loaded, or once a piece of text has been saved, the name
of the file will be displayed on the status line. This becomes the 'current filename’
and is remembered by the editor until changed, either by saving with another
name, by use of the NAME command, or by loading a new file. Once a file
possesses a current filename the name may be omitted when saving a file.
Entering the SAVE command, and just pressing RETURN when the prompt
'SAVE filename:' appears, will save the file with the current filename. Care must
be taken to ensure that it is indeed the correct name, to avoid accidentally
erasing something else. If SAVE is typed and the name displayed is incorrect it
can be edited as described above ("Command entry').

EDIT 5-4

b). Editor commands

This chapter gives full details of the commands available in command mode.
Details of the syntax used and what the command does are given together with
any optional extensions to the basic command.

Many of the commands allow the use of ambiguous filenames. An ambiguous
filename is one which contains 'wildcards’. The editor has two types of wildcards,
which may be used in the same way as with CP/M commands.

? may be used to mean 'any single character’.
* may be used to indicate 'any number of characters’.

For example:

DATA?.TXT Any filename beginning with 'DATA’ and having one further
character (which may be blank), with the suffix "TXT’.

Bx.* Any filename beginning with 'B’, of any length and any suffix.
* Any file.

Note: Only one '+' may be used in each part of the filename and suffix.

EDIT 5-5

(i) Text file handling

CLEAR

Description:

LOAD (L)

Syntax:

Description:

Note:

Clears the text currently in memory. A request for confirmation
is made before this is done. On the PCW computer the same
effect is achieved by typing ALT-SHIFT-CAN in edit mode.

LOAD < filename >

A document will be loaded into memory from a disc file of the
specified name. A warning message will be given if the text
currently in memory has not been saved. Press "Y' to confirm
that this text is to be discarded.

If only the command name is entered, the editor will prompt for
a filename. Once loaded, the specified filename will become the
‘current filename'

MERGE (MER)

Syntax:

Description:

Note:

Note:
NAME (N)
Syntax:

Description:

MERGE < filename >

This is similar to LOAD but whereas LOAD clears any existing
text from memory and then loads the file in, MERGE inserts the
new file into the existing text at the current cursor position.

Care should be taken to ensure that the cursor is in the required
position before using this command.

The current filename is NOT changed.

NAME < filename >

Permits the name of the document in memory to be changed.
The new name becomes the 'current filename'.

EDIT 5-6

SAVE (S)

Syntax: SAVE <filename >

Description: The complete document in memory will be saved to a disc file
with the name specified.

Note: If only the command name is entered, the editor will prompt for
a filename. If the file already has a 'current filename’, then
pressing RETURN will result in the file being saved with the
same name. Alternatively, a new name may be specified, which
will then become the current filename.

SAVEB (SB)

Syntax: SB < filename >

Description: ~ This is the same as SAVE except that only the text within the
block defined by the block markers is saved.

Note: The current filename is NOT changed.

SPOOL (SPON)

Syntax: SPOOL < filename >

Description: Al output to the screen will also be sent to a file on disc with the
specified name until the file is closed with the SPOOLOFF
command,

SPOOLOFF (SPOFF)

Description: ~ Cancels the echoing of all screen output to a file, having first
closed the file.

SWAP (SW)

Description: ~ Swaps between two documents in memory. All settings of the

files and cursor, block markers etc are retained. See "Two file
editing’ for full details.

TYPE (T)
Syntax:

Description:

EDIT 5-7

TYPE <filename >

Used to "type’ the contents of a text file to the screen. The file is
not loaded into memory, merely the contents displayed on the
screen, This can provide a convenient means of viewing the
contents of a file without loading it into memory. Whilst the file
is being typed pressing STOP will pause the display. Pressing
STOP a second time will cancel the command and any other key
will resume.

(ii) Text manipulation

FIND (F)

Syntax: FIND <text> (< parameters>)

Description: The document will be searched for the first occurrence of the
specified text, according to any parameters specified and the
cursor positioned on the first character.

See chapter on Find and Replace for full details.

REPLACE (R)

Syntax: R <text> <newtext> (< parameters>)

Description: The document will be searched for the first occurrence of the
specified text, according to any parameters specified, and the
cursor positioned on the first character.

NUMBER (NUM)

Description: The purpose of this command is to add line numbers to, or

remove line numbers from, the beginning of every line of text.
This command will prompt for whether numbers are to be added
or removed from the document. If the choice to add line
numbers is selected, a starting line number and the value by
which each subsequent number is to be incremented will be
requested.

This provides a convenient method of writing BASIC programs,
amongst other uses, using the facilities of the editor and finally
adding the line numbers.

EDIT 5-8

NUMBERB (NUMB)

Description: ~ This command is similar to NUMBER, but only adds or
removes numbers within the marked block.

TAB

Syntax: TAB < column(s) >

Description: ~ Sets a tab stop at the specified column or columns. The last
number in the list may be preceded by '+". This causes tabs to be
set at equal intervals up to column 128.
Example:
TAB 8§, 15, #5 sets tabs at 8, 15, 20, 25, 30,.....
TAB without any parameters sets default tabs at every 8th
column.

(iti) Printer control and Printing

The following commands determine the form that printing will take.

BM

Syntax: BM <number >

Description: ~ Bottom Margin. Specifies the number of lines to be left blank at
the bottom of each page.

INTERNAL (INT)

Description: ~ Resets the printer output to the normal printer supplied with the
PCW range.

PARALLEL (PAR)

Description: Selects the parallel (Centronics) printer port for the output of all
printing.

EDIT 59

PL

Syntax: PL <length>

Description: Sets the length of each page in lines.

PRINT (P)

Syntax: PRINT (num)

Description: This command prints the document in memory.
PRINTB (PB) |

Description: Only the section of text defined by the block markers will be
printed.

PRINTER (PR)

Syntax: PRINTER (name)

Description: Selects the printer driver to be used.

PRINTON (PRON)

Description: All output to the screen will also be echoed to the printer, after
this command has been used, until PRINTOFF is used to cancel
it. One particular use is to provide a printed copy of a disc
catalogue.

PRINTOFF (PROFF)

Description: ~ Cancels the echoing of screen output to the printer, which has
previously been initiated by use of the PRINTON command.

SERIAL (SER)

Description: Redirects all printed output to the serial interface, for use with a
serial interfaced printer.

EDIT 5-10

(iv) Disc drive selection, cataloguing and disc formatting

A: (A)
B: (B)
C: (C)
D: (D)

Description:

Note:
M: (M)

Description:

Note:
DFORM

Description:

Note:

DFORMD

Description:

Note:

Select drive A, B, C, or D as the currently selected drive.
Optionally, the colon may be omitted.

Only valid if the specified drive is fitted and initialised.

Select drive M as the currently selected drive. Optionally, the
colon may be omitted.

Only valid on the PCW computers.

Formats a disc to either CF2 or CF2DD format, depending on
which drive is selected. On the PCW computer a disc in drive B
will be formatted to CF2DD format and a disc in drive A to CF2
format. On the CPC6128 data format is always used.

Both sides of a CF2DD disc are formatted at the same time, but
when formatting a disc in A to CF2 format, it is necessary to
format each side separately.

This command will format a disc as CPC6128 Data format.

PCW users should use this command if the disc will also be used
on a CPC6128. On the CPC6128 this command has exactly the
same effect as DFORM.

DRIVE (DR)
Syntax:

Description:

Note:

GROUP (GR)
Syntax:

Description:

USER (U)
Syntax:

Description:

CAT (DIR)

Description:

Extensions:

Syntax:

Description:

EDIT 5-11

DRIVE <drive letter >

Selects the specified drive. This command will accept drives
between. A and P, and an error message will be given if the
requested drive does not exist, or if it does exist but there is no
disc in the drive.

If any special drives are installed, such as a hard disc, which use
a drive letter other than A, B, C, D, or M, then this command
may be used to select the drive.

GROUP < number >

Selects the specified group/user number as the one which will be
used by CAT, LOAD, SAVE etc.

U <number >

Selects the specified group/user number as the one which will be
used by CAT, LOAD, SAVE etc. An alternative to the GROUP
command.

Performs a catalogue of the files on a disc. By default, with no
parameters, it will catalogue all the files on the currently
selected group of the currently selected drive.

Filenames, drive letters and group numbers.

CAT <ambiguous filename >
CAT <drive letter >
CAT < group/user number >

Either another group OR another drive may be specified.
Alternatively a filename may be specified using wildcards,
optionally with a drive letter prefix.

EDIT 5-12

Example:

Note:

INFO

Syntax:

Description:

CAT B:*LTR will catalogue all the files with a LTR suffix on
drive B and group 0.

The files are listed in alphabetical order with the size of each file
shown. The amount of free disc space is also shown. If this last
figure becomes too small it will be often be necessary to erase
backup files in order to save a file. The catalogue also displays a
symbol by certain files:

A '+’ following the filename extension indicates a protected file
(see PROTECT, below)

INFO < ambiguous filename >

The info command provides information about files. The
filename used can include wildcards, so INFO *.SRC will give
you information on all files with the extension .SRC. The
information displayed is the file length, file type (i.e. document,
program, system..) and its read or write state. RW means Read
and Write. RO means Read Only.

EDIT 5-13

(v) Disc file manipulation

COPY

Syntax:

Description:

Examples:

Note:

Note:

DCOPY

Description:

Note:

Note:

COPY <oldname> <newname >
COPY < ambiguous filename > (< group>) (<drive>)

There are two variations of this command, the first of which will
copy a file giving it a new name. The filenames may be prefixed
with the drive letter to copy a file from one drive to another with
a different name.

The second variation permits the use of 'wildcards’, but the
names cannot be changed. This allows the transfer of one or a
number of files with some common feature, from the current
group on any drive to any group on any drive. Either <group>
or <drive> or both may be specified.

COPY B:OLDNAME NEWNAME

COPY +TXT 1

Copies all files with suffix "TXT’ into group 1.

COPY B:*.» 2M

Copies all files on drive B (current group) to drive M group 2.

Any existing file with the same name, in the destination
drive/group, will be renamed with a " BAK' suffix.

Copying does not erase the original files, so if they are no longer
required, ERASE must be used after the copying process.

Calls an Arnor utility program which copies the contents of one
disc onto another. This command will copy single sided single
density (CF2) discs only. Requires DCOPY.COM to be present
on one of the drives.

The original contents of the disc will be erased.

In order to copy CF2DD double sided discs, as used in drive B
on the PCW8512, it is necessary to leave the editor and use the
DISCKIT program which is on the System Utilities disc supplied
with the computer.

EDIT 5-14

ERACOPY (ECOPY)

Syntax:

ECOPY <oldname > <newname >
ECOPY < ambiguous filename > (< group>) (<drive>)

Description: ~ This is the same as COPY in every respect but one - if a file
already exists with the same name as the file being copied, this
file is erased before copying, whereas COPY renames this file as
a backup file.

Example: ECOPY B:** A

ERASE (ERA)

Syntax: ERA <ambiguous filename >

Description: ~ All files which meet the criteria of the filename will be erased.
Wildcards are permitted and the drive letter may be specified as
a prefix to the filename.

Note: This is a potentially destructive command and should be used
only with care. One very useful version is to use ERASE * BAK
to erase all back up files from the disc in the current drive.
ALT-f7 on the PCW (and CTRL-f9 on the CPC) will perform
'ERA *BAK'.

RENAME (REN)

Syntax: RENAME <newname> < oldname>

Description: This command renames files on a disc. It does not move or

: change the file, merely renames it.
Note: If a file requires moving to another disc and renaming, the

COPY command should be used and then the original file
erased with ERASE.

EDIT 5-15

(vi) File protection
ACCESS (ACC)
Syntax: ACCESS < ambiguous filename >

Description: Sets the status of a file or files to 'Read-write'. Wildcards are
permitted. See PROTECT for details of the reverse operation.

PROTECT (PROT)

Syntax: PROTECT < ambiguous filename >

Description: Sets the status of a file or files to 'Read-only’. Wildcards are
permitted. Files which have read only status can not be
overwritten by subsequent files of the same name. An error
message will be given if an attempt is made to do so. Protected
files are indicated in the catalogue by an asterisk following the
filename. See ACCESS for details of the reverse operation.

Note: PROTECT cannot stop files being erased if the disc is

reformatted, or a complete disc is copied onto the disc, either
with DISCKIT or the DCOPY command.

(vii) Phrase, Exec and Symbol commands

 EXEC (X)

Syntax: EXEC <filename >

Description: This command causes the contents of the specified file to be
treated as if they were being typed in at the keyboard (See
Chapter on EXEC Files for full details).

LPHRASES (LP)

Description: Lists all the currently defined phrases between A and Z. See the
chapter on "Phrases’ for full details.

EDIT 5-16

PHRASE (KEY)

Syntax: KEY <letter> < phrase>

Description: ~ Following the command should be a key letter (A-Z) which is
the key that will be used with the EXTRA key, to recall the
phrase. This should be followed by the phrase, which may
consist of simple text or may be a combination of text,
commands and Escape codes. See the chapter on "Phrases’ for
full details.

SYMBOL (SYM)

Syntax: SYMBOL < char>,<nl1,n2,n3,n4,n5,n6,n7,n8 >

Description: The SYMBOL command allows you to redefine a character as it

will appear on the screen. The first number following the
command is the character to be redefined. The eight numbers
following are the bytes making up the character. See your Basic
manual for more information on SYMBOL as this command is
identical.

(viif) Miscellany

CPM
Description:
HELP (H)

Syntax:

Description:

Note:

Quits straight to CP/M.

HELP
HELP <subheading>

The command, 'HELP’, used on its own will produce a list of the
subheadings in which the commands are grouped. Entered with
the appropriate subheading (subheadings may also be
abbreviated to a single letter), it will list all commands relating to
that subject, together with any abbreviations.

The file ACOMMAND.HLP must be present to use HELP with
a subheading.

PAUSE
Syntax:

Description:

QUIT (Q)

Description:

Note:

EDIT 5-17

PAUSE

This command is primarily intended for use in an EXEC file.
See chapter on "EXEC files".

Quits the editor and returns to CP/M command mode. If a
document is in memory and any changes have been made to it
since it was loaded or last saved, a caution will be issued,
warning that the document has not been saved and asking for
confirmation of the desire to continue.

Details of any files in memory, settings and phrases are retained
on the temporary drive and if the editor is re-entered, the editor
will be configured exactly as it was when exited.

(ix) External commands

External commands call other utility programs from disc. The program files
specified must be available at the time the command is used. They may be on any
disc drive - the editor will search all drives to find the file. The following utility
programs are designed so that on completion of their task, a return is made to
the editor with any text that was in memory at the time the command was called

still intact.
CONFIG

Description:

This command calls the the editor configuration utility program
CONFIG.COM. This allows many of the default settings of the
editor to be altered to suit the user. The file, CONFIG.COM
must be available. See "Utility programs' for full details.

EDIT 5-18

DCOPY

Description: Calls a utility program which copies the contents of one disc
onto another. This command will copy single sided single density
(CF2) discs only. See "Utility Programs’ for full description.

Note: The original contents of the disc to which the files are being
copied will be erased.

Note: In order to copy CF2DD double sided discs, as used in drive B
on the PCW8512, it is necessary to leave the editor and use the
DISCKIT program which is on the System Utilities disc supplied
with the computer.

SETPRINT (SP)

Description: A utility program to create suitable printer drivers to enable any

printer to be used with the editor. The file, SETPRINT.COM
must be available. See "Utility programs’ for full details.

(x) Programming commands

AC

Description:

Note:

ASM

Description:

Note:

MA

Description:

Compiles links and runs a C program. If there are any
compilation errors the program is not run.

This command requires the Arnor C program files to be
available.

Assembles the file in memory. If there isn't one you are
prompted for a file to assemble.

This command requires the Maxam II Assembler program files
to be available.

As ASM, but prompts for a filename unless one was specified
following the command.

MON

Description:

Note:

MM

Description:

MSM

Description:

Note:

Note:

RUNC

Description:

Note:

EDIT 5-19

Runs which ever version of the Maxam II Monitor it finds first,
glassing the name of the file being edited as a parameter. If this

e has previously been assembled the object code of that name
is automatically loaded into the monitor.

One or other of the Maxam II program files must be present on
one of the drives.

As above but runs the large version of the monitor.

As above but runs the small version of the monitor.
The MM and MSM commands will not attempt to load in the
object code from the program being edited.

With the MM and MSM commands, the appropriate program
file must be present on one of the drives.

Enters the Arnor C run time system.

The Arnor C program files must be present on one of the drives.

Each of the above commands can be followed by a filename. The specified
file will then be used by the called program. If "" is entered as the filename then
the assembler and C will prompt you for a filename.

EDIT 5-20

(xi) External programs

Other programs may also be called from within the editor. When this is

feature is used, the text in memory will be saved to a temporary file and the name
passed as a parameter to the program being called.
For example, typing '*BCPL' will call the compiler called BCPL (i.e. the
program file BCPL.COM), which will then compile the source code which was in
memory. Unless these programs have been written specifically for the purpose,
they will not return to the editor automatically and this must be done by typing
'APED’ from CP/M command mode. The temporary file will automatically be
loaded back into the editor.

*
Description: Runs a specified CP/M Plus program.
Example: *BCPL

will run the BCPL compiler, passing the name of any file in
memory as a parameter

EDIT 5-21

¢). Large Files

The editor is capable of handling large files very efficiently and the only limit
on the size of the files which can be edited is the capacity of the disc drives. It
must be remembered that under CP/M, large files cannot be totally loaded into
memory at one time, and as editing continues and progress is made through a
long document, the editor will automatically save parts of the document as
temporary files.

As a result, it is preferable to start editing a large file with as empty a disc as
possible. With the PCW computers, drive M is normally used as the drive on
which these temporary files are stored. On the CPC6128, which does not have a
memory drive, the temporary files are saved onto the text file disc. This would
normally be drive B on a two drive system.

Note: it should also be remembered that there must be sufficient space on the
text disc to save the file when editing is completed.

In the event that the file becomes so large that there is no room left for the
temporary files to fit, a "Disc full' message will be issued. If this happens, it will
usually be possible to delete one or two files from the disc or drive to make
room, before continuing. For example the disc might have copies of the help files
on it, in which case deleting these would give more space. Once this situation has
been reached, it is worth considering whether the file should be broken down
into smaller parts if further editing is required.

Other than the points mentioned above, editing of large documents is exactly
the same as editing any other document. It should also be remembered that the
ALT-[and ALT-] commands move to the start and end of the text in memory,
not the start and end of the whole document. With a small document this will be
the same thing, but if the start or end of a long document is required, then ALT-|
or ALT-] should be pressed a second time.

Important notes on large file editing.

1. It is important to ensure that a disc is present in the selected drive at all
times and that it is not changed for another disc during the course of editing
the document.

2. The editor saves temporary files with various names commencing with
'APED'. Under NO circumstances must any of these files be deleted. When
the document is completed and saved, the editor will automatically delete
the temporary files which are no longer required.

EDIT 5-22

Are large files necessary?

Even though the editor can handle 'unlimited size' files, this is perhaps a
suitable place to consider whether it might be more convenient and efficient to
work with a number of smaller files. Rarely is there any NEED for a long
document to be in one piece. For example: A long program can be broken down
into a number of sections or subroutines.

Whilst it may appear that there are advantages to being able to work on one
long file so that it can all be viewed and edited at the same time, there are a
number of points which should be considered.

1. In the event of a catastrophe, such as a power failure, or accidentally
deleting a file from a disc, if the text is in one long file, the complete file
may be lost.

2. Due to the limited amount of memory available under CP/M, it is not
possible to have the whole of a large file in memory at the same time and as
progress is made forwards and backwards through the file, parts of it have
to be saved to temporary files and other parts loaded. The editor has
specially written routines which do this more efficiently than other
programs, but it can still take a short time to jump from one part of a file to
another, whereas with a smaller file this will to all intents and purposes be
instantaneous.

3. Itis usually easier to locate specific sections of text in a smaller file.

4. Usually only a relatively small part of a file will actually be worked on at a
time and it 1s considerably quicker to load, and save smaller files.

EDIT 5-23

d). Two File Editing

The editor provides the facility to work on two files at the same time. These
files are maintained quite separately and are loaded and saved individually. Any
operation can be carried out on one file without affecting the other, the cursor
location and all markers being maintained for each file. Blocks of text can be
copied between one file and the other.

This is an extremely powerful function and is controlled by only three
commands, one of which is used from command mode and the other two from
edit mode.

SWAP (SW) : Command mode - Swap between two files in memory
ALT-O : Edit mode - Copy block over from the other file
ALT-Y : Edit mode - same function as SWAP

To load a second file, 'SW' should be entered from command mode and the
current file will be switched, leaving an empty file. The second file should be
loaded in the normal way. Switching between the two files will cause the
information on the status lines to change to suit the current file, enabling easy
recognition of which file is being worked on.

In edit mode, ALT-Y performs exactly the same purpose as 'SW’, enabling
quick switching between files.

The ALT-O (letter 0) command is extremely useful, as it enables any part of
the text of either file to be copied over to the other.

Before a block of text can be copied over, the block should be marked out
using the markers in the normal fashion. Typing ALT-Y will swap files and the
cursor should then be positioned where the text is required. If ALT-O is then
pressed, the block will be copied across.

If the original text is no longer required, ALT-Y should be pressed again, to
return to the original file, followed by CUT, to delete the original text.

Two file editing is also very convenient as a means of keeping notes, for later
attention, during the course of editing a file. Press ALT-Y, make the note and
ALT-Y again, to return to the original file.

Another use for ALT-O is for transferring text from one file to another -
load the first file, type SWAP, load the second file and use ALT-O to copy the
blocks required into the first file, before re-saving it. This is quicker than using
SB (save block), loading the other file and merging the saved block of text into
the file and finally resaving it.

EDIT 5-24

e). SPECIAL CHARACTERS

The editor is capable of being used with most non-English languages and
fully supports the use of accents and characters such as c-cedilla.

Characters containing accents may be typed in during the course of editing
and will appear correctly on screen.

There are seven main accents which are required to cover the usual range of
European languages and these may be obtained in the following way.

The base character should be entered first and then immediately followed by
EXTRA and the number key which contains the required accent (the accents
and their keys are listed below). The accent will then be positioned over the
character. Accents may be used with any character, which permits the use of the
editor with a number of languages which normally are not catered for. Welsh and
many of the Eastern European languages are covered.

Note: CPC6128 users should note that CTRL-1 to CTRL-7 are used to obtain
accents, instead of the EXTRA key and a number key. The special characters are
obtained by pressing CTRL-0, followed by the appropriate letter key, or by
pressing one of the function keys with either SHIFT or CONTROL (see below).

If an accent is required by itself, press space followed by the accent key.
Should any of the accent characters be required frequently it is possible to re-
define the keys to give just the accent.

Accents supported

PCW key CPC key Accent

EXTRA-2 CTRL-3 Umlaut

EXTRA-5 CTRL-5 Ring

EXTRA-6 CTRL-7 Acute accent
EXTRA-7 CTRL-6 Circumflex
EXTRA-8 CTRL-1 Grave accent
EXTRA-0 CTRL-4 Inverted circumflex
EXTRA-hyphen CTRL-2 Tilde

Note: The keys used on the PCW are the same ones used uﬁder CP/M, with the
exception that EXTRA-(, the 'Inverted circumflex’, which is used by a number of
Eastern European languages, is an additional accent.

In addition to these accents, which may be used on any character, a number
of phrases are initially defined as special 'non-English' characters and in the case
of the PCW, these are the same keys as are used in CP/M. A list of the keys to be

EDIT 5-25

pressed is given below.

Note: The phrases may be redefined and care should be taken when selecting
phrases, if any of these characters are required.

Summary of special characters available from the keyboard

The command LPHRASES displays all the characters available using the
EXTRA key (or function keys on a CPC 6128).

PCW key CPC key Character

f3 CTRL-f1 Lower case o slash [/

f5 CTRL-f4 Lower case diphthong 2

7 CTRL-f7 Lower case c cedilla ¢

SHIFT-f3 SHIFT-f1 " Upper case 0 slash g

SHIFT-f5 SHIFT-f4 Upper case diphthong 3

SHIFT-f7 SHIFT-f7 Upper case C cedilla ¢

EXTRA-A SHIFT-f5 Superscript a s

EXTRA-C CTRL-f0 Copyright ©
EXTRA-0 SHIFT-f6 Superscript o 2

EXTRA-P CTRL-f8 Paragraph symbol q
EXTRA-S SHIFT-f0 Eszett B

EXTRA-Y SHIFT-f3 Yen sign ¥

EXTRA-? CTRL-f5 inverted ? A

EXTRA-1 CTRL-f6 inverted ! i

EXTRA-< SHIFT-f8 French open quotes «

EXTRA-> SHIFT-f9 French close quotes »

SHIFT-ALT-<¢ CTRL-V « Left arrow <
SHIFT-ALT-»> CTRL-V > Right arrow >
SHIFT-ALT-4 CTRL-v 4 Up arrow A
SHIFT-ALT-V CTRL-V ¥ Down arrow 2

EDIT 5-26

f). Phrases and function keys

Phrases are pieces of text which can be stored and used at any time with a
single key press. The keys used to recall phrases are the keys marked ‘A to Z' on
the main keyboard when used in conjunction with the EXTRA key. Function
keys are essentially the same, but use the special function keys on their own and
in conjunction with the ALT, SHIFT and EXTRA keys.

There are 31 expansion tokens which by default are allocated to the keys
EXTRA-A to EXTRA-Z and a number of other keys. Several of these tokens
are also allocated to the function keys, duplicating a number of the letters. Some
of these tokens are already defined and cannot be changed, leaving 26 tokens
which may be defined by the user. By default, many of these tokens are pre-
defined to give a variety of European characters, such as 'C, cedilla’ and 'AE
diphthong’, but may be redefined by the user if not required for that purpose.

Each of these tokens can be allocated a string of text or codes up to 200
characters long.
(i) Predefined tokens

The following tokens are predefined by the editor and may not be changed.
Each of these selects command mode and executes a command.

PCW 6128 Definition

f1 CTRL-f3 CAT
ALT-f7 CTRL-9 ERA *BAK
FIND CTRL-2 FIND
EXCH SHIFT-2 REPLACE

EXTRA-ENTER CTRL-ENTER EXEC EXFILE

(i) Phrases and function key definitions

As far as the editor is concerned, there is no difference between phrases and
function key definitions. They are both merely strings (of text or codes) and any
difference would be in the use to which they were put, rather than their format.
For example, function keys would probably be used to carry out tasks or
functions, whereas phrases would be used to store text to be incorporated into
documents, though there is no reason why they should not be used for other
purposes.

EDIT 5-27

A string has a maximum length of 255 characters, subject to the total buffer
size and the free space remaining in it. It may contain any characters and control
codes. Any normal text may be typed in from the keyboard as usual, but in order
to be able to enter control codes, an escape code must be used to inform the
editor that the characters which follow constitute a control code. The escape
code used by the editor is the upwards pointing arrow (7). This is obtained by
pressing EXTRA-: (colon) on the PCW. It is used to allow entry of the following:

T <number> 1T Inserts the code specified by the number. The code may be
entered in decimal, eg. 11371, or hexadecimal, in which
case it must be prefixed by either # or &, eg. T &0D 1.

T <letter > is translated as a control code between 1 and 26 eg. TA
would be translated as Ascii code 1, T B as 2, etc.

T1 is translated by PROTEXT as a single up arrow. This must
be used if an arrow is required in the string.

Note: When specifying a code as a number, it must be both prefixed and suffixed
with the escape code character (1), but in other cases, it is only necessary to
prefix the character with the escape code. This is because a number could consist
of from one to three characters.

As an example of how one would use a control code, if a key was to be
defined so that when it was pressed it automatically did a catalogue of drive A
followed by a catalogue of drive B, the following string would be used:

CATATI3TCATBT131

'13' is the code for a carriage return, which would normally be given when
the RETURN key is pressed. As CAT requires the RETURN key to be pressed,
the codes are inserted into the string. Alternatively TM could be used instead of
T137T.

Details of the most useful codes are given in an appendix at the end of the
manual, but in the unlikely event that a full key translation list is required, this is
available from Arnor on request.

EDIT 5-28

(ili) Phrase commands

There are two commands which are directly connected with phrases and are
used from command mode:

PHRASE (KEY)

Syntax: PHRASE <letter > <string>
KEY <letter> <string>

Description: PHRASE and KEY are alternative names for the same
command. This command allows temporary strings to be created
at any time. The command is used from command mode and the
letter must be a letter between A and Z, followed by the string of
text or codes, which should be wrapped in quotation marks.

Note: If it is required to cancel a key definition, this can be done by
using a null string ("") following the key letter in the parameters.
This may prove useful when a number of phrases have been
defined and the buffer is too full to take any further definitions.
Any phrases which are no longer required can be discarded in
this way.

LPHRASES (LP)

Description: ~ Use of this command will list the contents of all the defined
phrases between A and Z. Where a phrase contains a code
between 0 and 31 or between 192 and 255 this will be displayed
in escape code form, e.g. T97T.

(iv) Storing phrases for regular use

The command PHRASE, which enables temporary phrases to be defined has
already been described and is very useful for quickly defining a phrase during the
course of editing a document, but once the program is left, these phrases will be
lost and would require re-entering the next time that the editor was used.

The editor has another method of defining phrases and function key
definitions, which enables users to keep one or more files of definitions on disc
and to load them as and when required. This is done through the use of an
EXEC file.

EDIT 5-29

A set of phrases should be saved with an appropriate name. Only those keys
required and their definitions need to be in the phrase file and any existing
phrases will not be changed or deleted unless redefined by the new ones. When
they are required, it is only necessary to go into command mode and use the
following command:

EXEC <filename >

where <filename> is the name of the file containing the phrases. This will
automatically allocate them to the specified keys.

(v) Using phrases and function keys

Once a phrase or function key has been defined by either of the above
processes it may be used within the monitor or editor at any time by pressing the
appropriate key. Any of them may be used either when in edit mode, or
command mode. The most convenient arrangement would probably be to use the
function keys for commands which would be used in command mode and the
keys 'A' to 'Z’ for strings of text to be used in documents.

Phrases are called by pressing EXTRA and one of the letter keys between
'A' and 'Z’, which gives 26 different possibilities. The function keys may be used
either on their own, or in conjunction with SHIFT, ALT, EXTRA and
SHIFT-ALT, which gives 20 possible combinations on the PCW.

When a phrase key or function key is pressed, the contents of the string will
be entered into the document (if in edit mode), or the command line (if in
command mode), as if it had been typed in at the keyboard, and any control
codes will be acted upon.

On the CPC6128 the 10 function keys 0 to f9 may be used either with SHIFT
or with CONTROL. The phrases are obtained in edit mode by typing CTRL-0
(zero) followed by a letter. Only the function keys may be used in command
mode, but these are set up to provide the various European symbols.

Note: Most of the function keys are allocated the same tokens as the keys A to Z
and redefining one will also change its equivalent. It is not possible to have
different contents in each of them. To set up a function key the KEY command is
used with the corresponding letter. A table listing the function keys and the
corresponding letters is given as an appendix.

EDIT 5-30

g). Exec files
(i) What is an EXEC file?

An EXEC file is a file which may contain text, commands and codes and
which, when called with- the EXEC command, will be read by PROTEXT and
the contents treated and acted on, as if they had been entered at the keyboard.

They are created in just the same way as any other text file, but what makes
them different is the content of the file and the way it is used later.

(ii} Creating an EXEC file

Creating an EXEC file is extremely simple and is done by just typing the
required text in, as would be done with any document, but there are a number of
special features which permit codes to be inserted into the text, which the editor
will understand to be instructions to do certain things.

In addition to ordinary text, any of the editor's command mode commands
may be used as well as any valid code between 0 and 255.

Codes must be entered in a special way, otherwise the editor will consider
them to be ordinary text. A special "Escape character’ is used to tell the editor
that the following character(s) is/are a code and the escape character used is the
vertical bar (}). This is obtained by pressing EXTRA-. (full stop) on the PCW.
The escape codes are exactly the same as used in phrase definitions except that
the bar () is used instead of the arrow (T).

The easiest way to describe the sort of uses to which an EXEC file might be
put, is to give one or two examples. The examples given are intended to show the
sort of things that can be done, rather than be particularly useful:

Example to change every occurrence of a certain word to another word in a
number of files.

L filel

R "buffer" "BUFFER" GA
Si13!

L file2

R "buffer" "BUFFER" GA
Si13}

L file3

R "buffer" "BUFFER" GA
Si13!

EDIT £-31

In the above example, 'L filei’ is the command to load a file called "filel’ and
'R "buffer" "BUFFER" GA' is the REPLACE command used with the options to
make it global and automatic. 'S |13}’ is the SAVE command. The process is
then repeated for 'file2’ and so on.

Note: When a new line is used, the editor will take this to mean that a carriage
return character (CR) is required, as would normally be given by pressing
RETURN after entering the command. In the case of the lines concerned with
saving, escape characters have been used to insert an extra CR code into the file.
The reason for this is that if a file is to be saved with the same name, then
fI-QIETURN is pressed once after entering the 'S’ and again to confirm the same
ilename.

When complete, the file should be saved with an appropriate name. Entering
'EXEC <filename >', from command mode will automatically execute the file of
that name whenever required.

(iii)»Creating a phrase file

This is easily done by using the PHRASE (KEY) command in an EXEC file.
This is an example of a phrase file, to be used to define phrases and function keys
in the editor:

KEY C "

KEY G nn

KEY B "This is a remark which can be inserted into the text"

KEY D "The EXTRA key and the appropriate letter should be pressed”
KEY A"CATA T13TCATBT131"

In the above brief example, keys B and D are straightforward examples of
text to be inserted when the appropriate key is pressed.

Keys G and C are defined as null strings. This will have the effect of
removing any existing definition from keys C and G. This may be desirable if a
second phrase file is being loaded, when a number of keys are already defined,
otherwise the phrase buffer may become full before all the new definitions are
loaded.

Key A is an example of the sort of definition which would be used for a
function key and in this case would perform a catalogue of drive A, followed by
drive B when SHIFT-f1/2 was pressed.

1t should also be noted that ' 1’ has been used, rather than the '}’ symbol, as
these commands are simulating entry of the phrases at the keyboard and phrases
require the ' T' escape character.

EDIT 5-32

Note: Because the EXEC file is executing a command to define a string, it is
necessary to specify the CR at the end of the command if one is required when
the function key is pressed, as the CR which is implied at the end of each line of
an EXEC file will serve only to execute the KEY command.

It is recommended that phrase files should be saved with a suitable suffix to
identify them, say "PHR'.
(iv) Commands related to EXEC files
EXEC (X) Execute a file
Syntax: X <filename >
Description: ~ The file specified will be opened for reading and the contents

read will be treated as if they were input from the keyboard, until
the end of the file is reached, at which time normal operation will

continue.
PAUSE Cause the editor to go into a ‘waiting’ condition.
Syntax: PAUSE

Description: ~ When this command is read by an EXEC file, the program will
halt until a key is pressed. Optionally a message will be displayed.
This is useful during the course of an EXEC file being executed,
as it will permit discs to be changed and messages to be displayed
before continuing execution.

(v) Using EXEC files

EXEC files may be used at any time by typing EXEC from command mode,
followed by the name of the file to be executed. If a file called "EXFILE' is
present on the currently selected drive, it may be executed at any time by
pressing EXTRA-ENTER (CTRL-ENTER on the CPC6128).

There is one further feature which can be very useful. If the 'less than'
symbol is used to prefix an EXEC filename when the editor or monitor is called,
it will be taken to mean that all input should be taken from the specified file,
until the end of the file is reached. For example, 'APED textfile < exfile’ would
load a text file into memory and then execute the EXEC file, which if required
could then carry out operations on the text file, such as replacing text.

EDIT 6-1

6. CONFIGURATION UTILITIES

Some features of the editor may be re-configured to suit individual
requirements and these may be changed by using the CONFIG.COM utility
program. In addition, the program SETPRINT.COM is also provided and may
be used-to modify existing printer drivers, or to create new drivers to suit printers
which use codes different from those on the supplied drivers.

These two utilities were originally written for PROTEXT. To retain
compatibility between the editor SAPED) and PROTEXT, the full programs, as
supplied with PROTEXT, are included on the disc. This means that many of the
functions are not relevant to the program editor.

It is recommended that you get used to using the editor before attempting to
change its configuration. If you create a configuration you don't like you can
either delete PROTEXT.CFG or re-enter CONFIG to adapt it.

In addition, a third wutility Frogram, DCOPY.COM is supplied and this may
be used to copy the contents of any CF2 single density disc onto another disc for
the purpose of making a back up copy.

Note: CPC6128 users with only one disc drive must save any files to disc before
using any of the utility programs and on completion it will be necessary to load
the file back into memory in the normal way. If the file is not saved before using
the utility, it is probable that part or all of the document will be lost.

All three programs may be used either from within the editor, or directly
from CP/M command mode by typing their name. The appropriate program
must be available on one of the drives at the time the utility is called from the
editor, or the current drive from CP/M, otherwise an error message will be given.

EDIT 6-2

a). DCOPY

It is good practice to keep back ups of any important files as it is always
possible for accidents to happen, or discs to fail. It is also good practice to make
backups regularly and systematically. DCOPY provides a complete copy of the
original disc, including any .BAK files.

Warning: DCOPY will copy the entire contents of one disc onto another. If a
blank formatted disc is accidentally copied onto a disc which contains files, the
result will be two blank discs, so care should be taken to ensure that the "write
protect’ tab on the original disc is set in the open position to ensure that this
cannot occur.

Note: The COPY option of DISCKIT should be used on the PCW to make back
ups of any CF2DD format discs of the type used by the second drive (Drive B)
on the PCW8512 and expanded PCW8256. The DCOPY program is only
intended to be used to copy single sided CF2 discs.

Once the program is called, instructions are given about which drive should
contain the original disc and also which drive to put the disc to be copied into.
Users of machines with only one drive will be given instructions about which disc
to insert at the appropriate times.

Before any copying is undertaken, the write protect tab should be opened on
the disc to be copied, to make sure that it cannot be accidentally overwritten.
When ready, press 'S’ to start, or press 'C' to cancel. Copying will then take place
automatically. On completion, the opportunity to copy another disc is offered.
Selecting "N’ at this point will return to command mode.

Note: This program takes an exact copy of the entire contents of a disc. Any files
on the disc onto which the original is to be copied will be erased, so it is
important to ensure that there is nothing of importance on the backup disc
before commencing copying. If it is required to copy only a number of files onto
another disc which already contains files, the the editor commands, COPY or
ERACOPY, should be used to copy the relevant files across.

EDIT 6-3

b). CONFIG

CONFIG allows certain of the features of the editor to be configured to suit
individual preferences if the default settings are not considered suitable.

The most likely options to require alteration are:-

Default drive for text

Default group for text

Temporary text drive
Insert/overwrite mode

Set continuous/single sheet printing
Undelete buffer size

Set printer driver options

Set name for Autoexec file

Only some of the many options available in CONFIG are relevant to use with
the editor and these are described below. Changes made to options which are not
relevant will be ignored by the editor.

Option 2 from the main menu is NOT relevant to the editor.

The required main menu option should be selected by pressing the
appropriate number key and the screen will clear and be replaced by a further
set of options.

(i) Editing the options

Once the selection has been made from the main menu with the number key,
all the options within the new menu are selected by one of two methods,
depending on the selection made. The 'Set keys' options are slightly more
complex and are described separately.

Details of the current values of each option are shown and in the event that
there is no existing PROTEXT.CFG file, then the values shown will be the
default ones provided by the editor. The up and down cursor keys are used to
select which of the options are to be changed

The STOP key (ESC on the CPC6128) can be used, at any time, to go back
to a previous menu. If a beep is heard, then this means that an illegal value has
been entered, or else the key that has been pressed is not relevant. In much the
same way that an illegal value may not be entered, it is not possible to move from
an entry until a legal value has been provided.

EDIT 6-4

Some options have an easily defined set of possible values (such as yes/no, or
internal/serial/parallel printer), in which case using the right cursor key will move
forwards through the options and using the left cursor key will move back
through them. Once the required value has been selected, the up and down
cursor keys may be used to move on to another parameter.

There are also a number of options which have no set range of parameters,
such as those requiring the name of a file. In this case the parameter to be
altered is selected, as before, with the up and down cursor keys and then the
value required is typed in.

(ii) The Set keys options

The two options to 'Set keys' are slightly different and require a key number
entering, to specify which key is to be edited. Each key on the keyboard has an
individual 'key number’ and these may be found from the diagram in the
computer's User Manual. Once the key number has been entered and RETURN
pressed, a table will appear.

This table is split into three parts vertically, with the left columns showing the
key number, the middle showing the key values as ASCII characters and the right
side as hexadecimal codes.

The PCW 8256/8512 key table has five values for each key, representing that
key when pressed on its own, with EXTRA, with SHIFT, with ALT, and with
ALT and SHIFT simultaneously.

The CPC6128 table has three values - the key on its own, with SHIFT, and
with CONTROL.

The cursor will be positioned on the ASCII character of the first column for
the selected key. The left and right cursor keys may be used to move backwards
and forwards across the ASCII characters. Pressing the required key on the
keyboard will change the setting in the table to the new value. In addition, it is
possible to move up and down through the key numbers by using the up and
down cursor keys.

Normally this is the easiest way to change which characters are allocated to a
key, but there are a considerable number of characters and codes which cannot
be keyed in directly from the keyboard, as they do not have their own key.
Pressing the TAB key will switch the cursor into the "Hex code' side of the table
and the hexadecimal number representing the character may then be typed in.
The computer's User Manuals give full details of the hex values of characters and
an Appendix at the back of this manual lists the codes for phrases and function
keys, as well as the codes for the command keys.

EDIT 6-5

When editing is complete, the STOP key may be pressed to back out to the
previous menu.

The remainder of this chapter gives details of the various options available
from the main menu and their functions.

(iif) Set editing options

This option enables the user to configure a number of features for use within
edit mode, so that when the editor is first loaded the specified features will be in
operation. Only the relevant configurable options are listed below, with brief
notes describing those options for which the use may not be self evident. The
options should be selected and altered by the methods described above.

Default drive for text
Default group for text
Insert/overwrite mode
Help lines on

Tabs and returns displayed
Spaces displayed

Undelete buffer size (1)
Cursor flash rate (2)
Temporary text drive (3)

1. Undelete buffer size - This specifies the amount of memory which must be
set aside to store deleted text. The larger the buffer, the less memory will be
available for the text.

2. Cursor flash rate - The larger the number, the slower the flash rate.

3. Temporary text drive - This option defines the disc drive on which the editor
will store those parts of a text file which are not in memory.

Set printing options

The only relevant option is 'Continuous printing on', and this determines the
sequence of codes to be sent to the printer at the start of printing. If the printer
driver is 'simple’ then nothing will be sent, otherwise the codes in the printer
driver for continuous or single sheet will be printed.

EDIT 6-6

(iv) Set general options

These options are concerned with setting the key repeat rates and the screen
colours (normal or inverse on the PCW). The expansion string buffer size
governs the size of the buffer which holds phrases as well as any function key
definitions. Note that the bigger the buffer, the less memory will be available for
text.

Expansion token buffer size
Key repeat rate

Key startup delay

PCW 8256/8512 colour

CPC 6128 border colour
CPC 6128 foreground colour
CPC 6128 background colour

(v) Set keys for PCW8256/8512

This option will rarely be needed, particularly by English speaking users, and
is primarily included for the benefit of anyone who might prefer to re-configure
certain keys on the keyboard to perform different functions. The most likely need
for this would be to arrange for special symbols or foreign characters to be
located on more suitable keys.

(vi) Set keys for CPC6128
This option serves the same purpose as c), and is for use with the CPC6128.
(vii) Set printer driver options

This option allows two default printer drivers to be specified for the editor to
load (one for PCW8256/8512, one for CPC6128) automatically. The maximum
amount of memory to allocate for control codes and for character translations
may also be specified (See SETPRINT). Note that if more space is reserved than
necessary, it will reduce the amount of memory available for text.

(viil) Set name for AUTOEXEC file

When the editor is first loaded, it will look for an EXEC file to execute. By
default, this is a file called EXFILE. This option permits another file with a
different name to be specified instead of EXFILE.

EDIT 67

(ix) Save configuration

Once all the required options have been selected and values specified, the
configuration details can be saved to a file by using this option. The configuration
file will be saved with the name PROTEXT.CFG.

Note: The CFG file is saved with the name 'PROTEXT.CFG' and is exactly the
same as a CFG file created with PROTEXT. If a suitable CFG file, created with
PROTEXT is available, it may be used instead of configuring one specially for
the editor.

Note: Only one configuration file may be present on a disc, as it must have the
name PROTEXT.CFG if it is to be automatically configured on entry to the
editor.

Note: Once a configuration file (PROTEXT.CFG) has been created, it should be
copied onto the other side of the Start of Day disc, so that it is available when the
editor is loaded.

(x) Quit configuration program

Using this option will return control to the editor command mode (or CP/M
if CONFIG was loaded from CP/M). If any changes have been made to the
configuration, but the Save configuration option has not been used, a request will
be made for confirmation that the changes that have been made are to be
discarded.

EDIT 6-8

¢). SETPRINT

A 'printer driver’ contains information for the editor about the printer being
used and the way it is to be used. This information is contained in a file with the
extension ".PTR’. the editor comes with two printer drivers already on the disc.

PCW.PTR - specifies character translations for the PCW internal printer.
EPSON.PTR - specifies character translations for a standard Epson
compatible printer.

The editor also includes the details of a 'simple printer’, i.e. a printer which
recognises no character translations.

Unless CONFIG has been used to specify a different default printer driver,
the editor, when used on a PCW8256/8512, will use PCW.PTR to print to the
internal printer, or if it fails to find it, will treat the internal printer as a 'simple
printer’. Similarly, if no default printer driver is specified for the CPC6128, the
editor will assume a 'simple’ parallel printer.

If an Epson compatible printer is to be used, then CONFIG should be used
to specify 'EPSON.PTR' as the default printer driver.

If the printer being used is not one covered by the supplied printer drivers, it
is recommended that SETPRINT is used as soon as an understanding of the
requirements has been gained and after studying the printer control code section
of the printer manual, in particular.

Once the program has loaded, the screen will clear and an opening menu will
appear, listing the available options. The only options of any interest for the
editor are:-

- Set printer options

- Set serial options

- Set character translations
Load printer driver

- Save printer driver

- Quit SETPRINT

OB
[}

The option required should be selected by pressing the appropriate number
key and the screen will clear and be replaced by a further set of options. The up
and down cursor keys are then used to select which of these options are to be
changed.

EDIT 6-9

If SETPRINT is entered from the editor, then the printer driver currently
loaded printer driver will automatically be loaded into SETPRINT and the
current values of each option will be displayed. If there is no printer driver
loaded, or SETPRINT is entered from CP/M, it will be necessary to use option 6
to load the required printer driver.

(i) Editing the options

The STOP key (ESC on the CPC6128) can be used at any time, to go back to
a previous menu. If a beep is heard, then this means that an illegal value has been
entered, or else the key tﬁat has been pressed is not relevant. In much the same
way that an illegal value may not be entered, it is not possible to move from an
entry until a legal value has been provided.

Some options have an easily defined set of possible values (such as yes/no, or
internal/serial/parallel printer), in which case using the right cursor key will move
forwards through the options and using the left cursor key will move back
through them. Once the required value has been selected, the up and down
cursor keys may be used to move on to another parameter.

There are also a number of options which have no set range of parameters,
such as those requiring the name of a file. In this case the parameter to be
altered is selected, as before, with the up and down cursor keys and then the
value required is typed in.

Some options require a series of codes to be entered and these can be
entered either as text or as numbers. The top of the screen will display either the
message, "text’ or 'numeric'. In text mode typing any normal character will insert
that character as a code to be sent; some characters cannot be entered in this
way, such as ESC (decimal 27). The TAB key is used to toggle between text and
numeric input, so in order to input codes of this sort, numeric mode should be
toggled on.

Once in numeric mode there are also two options, decimal and hexadecimal
(the top of the screen will display 'decimal’ or 'hex'). ALT-TAB will switch
between decimal mode and hexadecimal mode. When entering numbers, they
should be separated either by commas or spaces.

In all modes, the cursor keys will move to different parts of the code in the
normal way. ALT with left and right cursor keys will move to the beginning and
end I?If the line of codes; ALT-E will delete from the cursor position to the end of
the line.

EDIT 6-10

Editing 'Character translations’

In the case of the character translations, a table will appear showing which
characters have already been redefined to other sequences of codes. The cursor
keys should be used to move through the table and the codes assigned to the
particular character the cursor is on will be displayed in the lower part of the
screen.

The character translation table can only display half of the characters at a
time and the other half may be selected or reselected, at any time, by pressing the
TAB key.

Pressing RETURN when the cursor is positioned on the required character
will select it, and the cursor will move down to the displayed codes to enable
them to be edited. Editing and entry of the codes is carried out as described
above. Pressing STOP will complete entry of the codes and return to the main
table.

When editing is complete, pressing STOP a further time will return to the
main menu.

(ii) Set printer options

These are general options and are used by the editor to determine in what
format and where the text is to be sent when printing takes place. It is important
when creating a printer driver, or modifying an existing one, that as many of the
relevant questions as possible should be answered. It may not be possible to
answer all of them, as some of the features may not be available on the printer
being used.

The options relevant to the editor are:-
Printer type

Continuous paper code

Single sheet code

By default, if no printer driver is loaded, the only setting made by the editor
will be 'unknown' printer type. No translations are defined.

EDIT 6-11

Printer type

The setting of this option determines which of the printer ports will be used
when the printer driver is loaded and the setting selected should be the relevant
one for the printer to which the printer driver refers. The options available are
*parallel’, 'serial’, 'internal’ and 'unknown'. The 'internal’ option refers to the
standard PCW printer and is not relevant for the CPC6128. If 'unknown' is
selected, then no change will be made to the current setting when the printer
driver is loaded.

Note: Only the 'internal’ setting will be relevant on the PCW8256/8512 unless a
serial/parallel interface has been fitted to the computer. On the CPC6128, the
only relevant setting will be 'parallel’ unless a serial interface has been added to
the computer.

Continuous paper code
Single sheet code

Continuous paper and single sheet codes are supported by some printers and
one has the effect of turning the other off. The main use of these codes is to set
the correct mode of operation for the PCW printer and is unlikely to have any
relevance for other printers.

{iii) Set serial printer options

This option only requires setting if the printer being used has a serial
interface and is used to set the values of the following parameters:-

Baud rate 9600
Number of data bits 8
Parity NONE
Number of stop bits 1
Mode Selector 0

The above options are all self explanatory, except for the last one, Mode
selector’. This option is used to set whether handshaking is 'on’ or 'off’. The
default setting is 0 (zero), which is 'off’ and the setting for ‘on’ is 255. If the serial
printer being used requires handshaking, then the value should be changed to
255.

The default values, shown in brackets above, will suit most serial printers,
but, if necessary, they may be changed to suit those available on the printer. It is
important that the settings for the editor and those for the printer are the same.
These options are all of the ‘limited set’ type and the left and right cursor keys
should be used to rotate through the options.

EDIT 6-12

(iv) Set character translations

This can be used to redefine one character either as another character or as
a sequence of codes. This is useful for printing characters that do not have a
stangard ASCII code, or those that a printer does not normally support. The
printer manual should be studied for details of how to create new symbols.

Users of daisy wheel printers may well find this option to be particularly
useful, as a number of them have the less frequently used characters allocated
values different from the more common standards.

Note: The PCW.PTR printer driver already has a number of characters
translated, or redefined and all characters between ASCII 32 and 127 and also
those characters listed in the PCW user manual, between 160 to 254, may be
printed without any alterations being required. If the PCW.PTR driver is
modified slightly to adjust the few codes which differ from the "Epson’ standard,
it will be possible to use this printer driver with an Epson compatible printer, to
print all of these characters as well.

Note: The code 255 decimal, the 'equivalent’ sign should not be used or allocated
to any character.

Any characters which have been redefined will be displayed in the table in
inverse video.

A common problem is printing the '£’ sign. If the printer is not printing this
(it often comes out as a '#"), the character number for '£’ should be ascertained
from the printer manual and the '£' character redefined to be printed as this
character number.

Note: If the CPC6128 is being used and the character number is greater than 127
(hexadecimal &7F) it will not be possible to print the character by this method,
as the CPC6128 only has a '7 bit' printer port, which means that only codes lower
than 128 may be sent to the printer. There are two possible methods of
overcoming this limitation. Some printers have a special code, sometimes called
'Set MSB' or 'Set MSB to 1' and if so, these codes should be sent, then the code
for the character and finally the codes to 'reset top bit' (or 'Reset MSB' or 'Set
MSB to 0'). Alternatively, if the character is one that is contained in the printer's
foreign character sets, it is possible to send the codes required to change the
'nationality’, followed by the character and finally the codes to return the
'nationality’ to its original setting.

EDIT 6-13

(v) Load printer driver

Existing printer drivers may be loaded for modifications by use of this option.
The default filename extension for printer drivers is ".PTR'.

(vi) Save printer driver

This option permits the modified or newly created printer driver to be saved
for future use. The name by which the printer driver is to be saved, should be
entered. The default filename extension for a printer driver is "PTR’ and it is
recommended that this is used.

Note: Printer drivers should be saved onto both sides of the "Start of Day' disc, so
that they are available when the editor is loaded and also when SETPRINT is
loaded.

(vii) Quit SETPRINT
If any changes have been made to the driver and the save option has not

been used, SETPRINT will request confirmation that any changes are to be
discarded before returning to the editor command mode or CP/M.

EDIT 6-14

APPENDICES

APPEN 1-1

A1. SUMMARY CF COMP!LER COMMANDS

Description of abbreviations

afn ambiguous filename (including wildcards)

cmd runtime commands

d drive letter

fn a filename

If= optional link filename for resulting file
Ifl list of link files to be used

nfn new filename '

ofn old filename

of= optional object filename for resulting file
opts optional parameters

sfn source file

Parameters in angle brackets '<..>' are mandatory, whilst those in normal
brackets '(..)" are optional.

a).Redirections available with the compiler

stdin, stdout and stderr may be redirected in the following ways:
<filename redirects stdin to read from a file
>filename redirects stdout to a file
> >filename redirects stdout, appending to an existing file

#filename redirects stderr to a file
>filename redirects stderr, appending to an existing file

b). Commands from the editor or CP/M

AC compile the current text in memory

AC <fn> compile a named file

RUNC enter runtime system interactively

RUNC <cmd > use runtime commands. See "Run time system’

RUNC <fn> (opts) run an already compiled program

APPEN 1-2

c). Run time system

(i) Built in commands:

A select drive A

B select drive B

M select drive M

Q quit the runtime system

(ii) Run time command programs

COMPILE <fn> (opt) the source code compiler

LINK of=) <Ifl> the linker
JOIN If=) <lfl> join two or more link files into one link file
* DIR (d) utility to list a disc directory
* DUMP <fn> (ofs) hex/ASCII dump of file (opt. offset within file)
* ERA <afn> (V) erase specified files on disc (opt. Verify)
* REN <nfn> <ofn> rename specified file

+ TYPE <fn> (ofs) type file to screen (opt. offset within file)

Note: Commands marked with an asterisk '+’ are similar to the commands with
the same name in the editor.

d). Compiler
Syntax:

COMPILE <sfl> (opts)
Options:

-d defines a macro

-g suppresses creation of the global table.

-1 automatically link after a successful compilation

-m sets maximum errors reported before compilation abandoned
-q suppresses sign on message and summary information

-t sets drive for temporary files.

-w suppresses compiler warning messages.

e). Linker

Syntax:
LINK (of =) <HfI> (opts)

Options:
-1 suppress linking of standard library (STDLIB.L)
-n list functions whilst linking, in form:
-q suppresses sign on message and summary information
-r automatically run the program after linking

f). Joiner
Syntax:

JOIN (If =) <Hl> (opts)
Options:

-n list functions whilst joining, in form:
-q suppresses sign on message and summary information

APPEN 1-3

APPEN 1-4

APPEN 2-1

2. LIBRARY FUNCTIONS

The library functions are collected into groups in this section, according to their
purpose. Each function is accompanied by a brief description. The degree of
*portability’ is indicated by the following abbreviations:

S Standard, as defined by Kernighan and Ritchie, or found in
virtually all C systems.

C Commonly found in many C systems.

A Arnor C specific.

Three 'standard’ library files are provided with Arnor C. The difference between
them being the number of functions included. The 'mini’ library contains a
minimum number of functions. The 'small’ library contains those functions
indicated, as well as all the functions in the "mini’ library.

A separate library of mathematical functions is also provided.
The second abbreviation indicates the library in which the function is defined:

Min Defined in all 3 standard libraries
Small Defined in MINLIB.L and SMLIB.L
Maths Defined in MATHS.L

Macro Defined as a macro in STDIO.H

The full library contains all the functions listed, except those indicated as being in
the maths library.

The next chapter gives full details of every function and is listed in alphabetical
order for easy reference.

By convention, those functions with names that start with the underline character
are primarily for the use of other functions, and would not normally be needed in
a C program.

APPEN 2-2

High level 1/O functions
clearerr S Macro
fbinary A

fclose S Small
feof S Small
ferror S Macro
fflush S

fgetc S Small
fgets S Small
fileno S Macro
fopen S Small
fprintf S Small
fputc S Small
fputs S Small
fread S Small
freopen S

fscanf S

fseek S Small
ftell S Small
ftext A

fwrite S Small
getc S Small
getchar S Macro
gets S Small
getw S Small
printf S Small
putc S Small
putchar S Macro
puts S Small
putw S Small
rewind S

scanf S

sprintf S

sscanf S

ungetc S Small

clear file error flag

set file to binary mode

close file using file pointer
check for end of file

check file error flag

flush buffer

input character

input until end of line

convert file pointer to file handle
open file using file pointer
formatted output

output character

output string

input n characters

open file using existing file pointer
formatted input

seek to location in file

get current location in file

set file to text mode

output n characters

input character

input character, using stdin
input until end of line, using stdin
input word

formatted output, using stdout
output character

output character, using stdout
output string

output word

seek to start of file

formatted input, using stdin
formatted output to a buffer
formatted input from buffer
put back last character read

Low level I/O functions

file I/O
close
creat
Iseek
open
read
write
_fchret
_feof
_finch
_foutch
_ftell

screen output
cursoff
curson
getcurs
getwin
mvoff
invon
putch
rdmatrix
selwin
setcurs
setwin
unwrchar
wrchar
wrmatrix

keyboard input
escoff

escon

getch

getche

kbhit

ungetch

printer output
busypr

prch

setpr

S>> NNn®

b gt i o T e S

aona» >

>

Min
Macro
Min
Min
Min
Min
Min
Min
Min
Min
Min

Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Min

Min
Min
Min
Min
Min
Min

APPEN 2-3

close file

create file

seek to location
open file

mmput n characters
output n characters
return character
test for end of file
input character
output character
get current location

turn off cursor

turn on cursor

find location of cursor

find location of window

turn off inverse video screen display
turn on inverse video screen display
output a character to screen

read character matrix

select window for output

position cursor on screen

define a window

read character from screen

output any character to screen
define character matrix

disable escape checking

enable escape checking

input a character from keyboard
input character and echo to screen
check for key pressed

return character to keyboard

check whether printer is busy
print character
select printer output

APPEN 2-4

String functions

index S Small locate character from start of string
strcat S Small concatenate two strings

strchr C Small same as index

strcmp S Small compare two strings

strempl C compare two string, ignoring case
strepy S Small copy a string

strcspn C locate character not in given set
strdup C duplicate string, using malloc

strlen S Small return string length

strlwr C convert string to lower case

stroncat S Small concatenate to a given maximum length
strncmp S compare to a given maximum length
strncpy S Small copy to a given maximum length
strpbrk C get pointer to break character
strrchr C locate character from end of string
strrev C reverse string

strset C initialise string with given character
strspn C locate character in given set

strtok C look for token using given delimiters
strupr C convert string to upper case

Character classification

isalnum S Macro test for a letter or digit

isalpha S Macro test for a letter

isascii S Macro test for ASCII value less than 128

iscntrl C Macro test for a control character (less than 32 or 127)
isdigit S Macro test for a decimal digit

isgraph C Macro test for a printing character and not space
islower S Macro test for a lower case letter

isprint S Macro test for a printable character

ispunct S Macro test for a punctuation character

isspace S Macro test for a space, tab, return, line or form feed
isupper S Macro test for an upper case letter

isxdigit C Macro test for a hexadecimal digit

Note: these are also supplied as functions in the full librarv.

APPEN 2-5

Conversion functions

atof S convert string to double

atoi S convert string to integer

atol S convert string to long

ecvt C convert floating point number to E format
fovt C convert floating point number to F format
gevt C convert floating point number to G format
strtod C Small convert string to double

strtol C Small convert string to long

toascii S Macro force character to ASCII (in range 0 to 127)
tolower S Macro convert character to lower case

toupper S Macro convert character to upper case

Note: the last three macros are also supplied as functions in the full library.

Memory functions

memchr C locate character in memory

memcmp C compare memory blocks

memcpy C copy memory block

memset C initialise memory contents

movmem C move memory block, checking for overlapping

Memory allocation functions

calloc S allocate and initialise block of memory
free S Small free previously allocated memory block
mallinfo A Small return memory status information

malloc S Small allocate block of memory

APPEN 2-6

Mathematical functions

acos
asin
atan
atan2
ceil
cos
cosh
€xXp
fabs
floor
fmod
frexp
ldexp
log
log10
matherr
modf
pow
rand
sin
sinh
sqrt
srand
tan
tanh

O

oleloleleoloielielelololololololiolelolololololo]e)

Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths
Maths

Miscellaneous functions

abort
abs
execv
exit
longymp
max
min
setymp
_exec
_exit

73737 Yo ¥e 11 10120

Small
Macro
Small
Small
Min
Macro
Macro
Min
Min
Min

inverse cosine

inverse sine

inverse tangent

inverse tangent of y/x

lowest integer > = number
cosine

hyperbolic cosine

exponential

absolute value of double

highest integer < = number
floating point modulus

split into mantissa and exponent
construct number from mantissa and exponent
natural log

log to base 10

maths error handling function
whole and fractional part
calculate x to the power of y
random number generator

sine

hyperbolic sine

square root

seed the random number generator
tangent

hyperbolic tangent

terminate program execution

absolute value

execute another program using argument vector
exit program and close files

long jump to a given location

maximum of two values

minimum of two values

set location for jump

execute another program

exit program

System functions

bdos
bios
call
drsearch
filesize
firmware
getdrive
mnp
outp
peek
poke
rename
seldrive
setfcb
settime
time
unlink
version
_getlim
_getsp
_puthim

bk e A T Telelelolek Aok S o)

Small

Min

Small

Small
Min
Min
Min
Min

APPEN 2-7

call CP/M BDOS function

call CP/M BIOS function

call a machine code subroutine
look for file on all drives

find the size of a file

call firmware routine

get the currently selected drive
input from a port

output to a port

read byte from memory address
store byte at memory address
rename file

change currently selected drive
set up file control block for BDOS function
set the time

get the time

delete file

determine model of computer being used
get lower limit of free memory
get upper limit of free memory
set lower limit of free memory

APPEN 2-8

APPEN 3-1

A3. COMPILER ERROR MESSAGES

These error messages are displayed on the screen when errors occur. They
are contained in the file 'ERRMSG.R". If this file is not present, error numbers
will be displayed as listed below.

1"\0’ not allowed in strings

2 Cannot open file %s in mode %s

3 Out of memory

4 End of file encountered before #endif

5 End of comment before start of comment

6 End of file found before end of comment

7 "or ' expected

8 Macro with wrong number of parameters

9 Illegal #include (use "filename" or < filename >)
10 #else without a #if

11 #endif without a #if

12 #line has to be followed by an integer expression
13 Illegal # directive '
14 Macro pool overflow in lexical analyser

15 Illegal #if or #assert expression (does not reduce to a constant)
16 Need '(' to precede parameters in a macro

17 Macro parameters not closed with a ')’

18 '{’ expected to start array initialisation

19 '{" expected to start structure initialisation

20 '}" expected to end initialiser list

21'}" expected after single value initialiser

22 Expression does not reduce to constant

23 Cannot initialise unions

24 Initialisation string is too long

25 Multiply defined global identifier %s

26 '{" expected at the start of function body

27 Label reference(s) not resolved at the end of function
28 Multiply defined local identifier %s

29 Conlflicting type declarations

30 Declarator buffer overflow

31 Cannot define a function here

32 Warning: Size of object is zero/undefined

33 Missing ')’ in declarator

34 Cannot have an identifier in an abstract declarator
35 Code generation stack overflow : Function too complex
36 Badly defined declarator

37 Filename already given on command line

38 Cannot have an array of functions

APPEN 3-2

39 No ")’ in function declarator or declaration
40 Illegal function declarator

41 Missing ']’ in array bound

42 Unexpected value in function declarator

43 Structure/union forward declared but has not been defined yet
44 Illegal type of actual parameter

45 Typespec tag already exists

46 Expression required

47 RHS of operator expected

48 Illegal pointer operation

49 Warning: LHS of comma ignored

50 Mismatched pointers

51 Error in x?y:z

52 Sizeof argument required

53 Size of aggregate not known

54 Bad arg for unary &

55 Filename too long

56 Bad argument for + +

57 Bad argument for unary -

58 Bad argument for ~

59 Bad argument for !

60 Bad argument for unary *

61 Bad argument for cast

62 #assert failed

63 %s undeclared variable - assumed int

64 Unknown LHS for . or - >

65 Unknown offset into structure or union

66 Parameter list too complex

67 Illegal formal parameter in macro definition
68 Subscript required after '['

69 Expression workspace overflow

70 Symbol table full

71 Prefix for '[* must be array or pointer

72 Actual parameter required

73 ") or ', required after actual parameter list
74 Argument for + must be a pointer

75 l-value required

76 Expression cannot be converted to boolean
77 Tllegal type for operand

78 Hlegal type coercion

79 Error in post-processor files = 0x%.4x

80 Use compile <file> [-d <macro>] [-f] [-m < number>] [-q] [-[1<text>]
81 Type specifier expected

82 %s tag already declared

83 Structure or union specifier expected

APPEN 33

84 Option %c not understood in command line

85 %s multiply defined in aggregate

86 '}’ in structure declaration

87 Fields not supported

88 Cannot declare a function here

89 Semi-colon expected

90 %s doubly declared as parameter

91 %s is an user type - bac{) parameters

92 %s is not in the formal parameter list

93 Symbol table overflow

94 Character 0x%.2x not understood by lexical analyser
95 Doubly defined label

96 Identifier expected after a goto

97 While expected to close do loop

98 ’(’ expected after a for statement

99 ")’ expected after a for statement

100 Statement or declarator in invalid context

101 '(" expected before condition

102 ')’ missing from condition

103 Cannot define a function as external

104 Illegal control character inside string or character constant
105 Error %d while accessing link output file

106 Colon expected after case

107 Colon expected after default

108 End of file found unexpectedly (missed " earlier?)
109 Error %d while accessing temporary data file

110 End of file before end of compound statement

111 %s is illegally initialised

112 Warning: Condition is constant in x?y:z

113 ')' expected immediately after identifier in defined
114 ')' expected

115 Run out of global table

116 Non-portable implicit pointer conversion performed
117 Too many macro arguments

APPEN 4-1

A4. SUMMARY OF EDITOR COMMANDS

This summary is divided into the following categories and gives concise
details of the syntax of all commands used by the editor.

(a) Edit mode commands
) Command mode commands
c) External utility program commands
(a) Edit mode commands
PCW8512 PCWS8512 CPC6128

Cursor Movement

ALT-CHAR <« <« Move left one character
CHAR > > Move right one character
4 4 Move up one character
¥ v Move down one character
ALT-WORD SHIFT-< SHIFT-« Move left one word
WORD SHIFT--> SHIFT-—> Move right one word
SHIFT-P SHIFT-4 Scroll back 1 line
SHIFT-V SHIFT-¥ Scroll forward 1 line
LINE ALT-€ CTRL-¢ Move to start of line
EOL ALT--> - CTRL-—> Move to end of line
ALT-4 CTRL-4 Scroll back 18 or 25 lines
ALT-V CTRL-V Scroll forward 18 or 25 lines
ALT-Q CTRL-Q Scroll back one screen
(no overlap)
ALT-Z CTRL-Z Scroll forward one screen
(no overlap)
ALT-[CTRL-[Move to start of memory
ALT-] CTRL-] Move to end of memory
ALT-DOC ALT-[ALT-[CTRL-[CTRL-[Move to start of document
DoC ALT-] ALT-] CTRL-] CTRL-] Move to end of document
ALT-PARA ALT-< CTRL-< Move back one paragraph
PARA ALT-> CTRL-> Move forward one paragraph
CTRL-£ Move to top left of screen
ALT-L CTRL-L Go to last position

ALT-G CTRL-G Go to line/column

APPEN 4-2

ENTER

RETURN

SHIFT-RETURN
ALT-RETURN
TAB

SHIFT-TAB

Insertion and deletion

ALT-CAN

ALT-E

ALT-1

ALT-<DEL
ALT-DEL->
<DEL

DEL~>
SHIFT-<-DEL
SHIFT-DEL->
ALT-TAB
ALT-A
ALT-U
ALT-%

ALT-+

SHIFT-ALT-CAN

Block commands

SHIFT-[H]
CAN
PASTE
copy

CuT

SHIFT-COPY
ALT-K
ALT-M
ALT-COPY
ALT-CUT
ALT-0

RETURN

SHIFT-RETURN
CTRL-RETURN
TAB

SHIFT-TAB

CTRL-1I
CTRL-CLR

CTRL-E
DEL

CLR
SHIFT-DEL
SHIFT-CLR
CTRL-TAB
CTRL-A
CTRL-U
CTRL-*
CTRL-+

SHIFT-COPY
CTRL-K
CTRL-M
CTRL-COPY
CTRL-DEL
CTRL-0

Insert mode - split line and move to
start of next line

Overwrite mode - move to start of
next line

Move to column 1 of next line

Move to column 1 of next line

Insert mode - insert tab character
Overwrite mode - move to next tab
Insert mode - move to next tab
Overwrite mode - insert tab character

Insert line

Delete line

Delete to start of line

Delete to end of line

Delete character before cursor
Delete character at cursor
Delete word left

Delete word right

Toggle insert/overwrite mode
Transpose (alternate) characters
Undo last delete operation
Split line at cursor

Join lines

Clear text

Set or clear biock markers
Clear all block markers

Move block

Copy block

Delete block »

Copy block from other document

Find and replace, place markers

FIND

EXCH

= ALT-@ @
ALT-@ n
ALT-@ [
ALT-G]

UNIT ALT-[H

ALT-UNIT ALT-

Other commands

SH-ALT-H

PTR
EXTRA-PTR
ALT-ENTER

ALT-H

ALT-V B
ALT-V H
ALT-V S
ALT-V T
ALT-V cursors
ALT-Y

ALT-/

ALT-.
ALT-space
EXTRA-letter

Copy

CTRL-@ @
CTRL-@ n
CTRL-@ [
CTRL-@]
CTRL-@ +
CTRL-@ -

CTRL-H

CTRL-V B
CTRL-V H
CTRL-V S
CTRL-V T
CTRL-V cursors
CTRL-Y

CTRL-/

CTRL-\
CTRL-space
CTRL-0 letter

CAPS LOCK

SHIFT LOCK CYRL-CAPS LOCK

EXIT

STOP

Extra characters

SHIFT-ALT-A
SHIFT-ALT-¥
SHIFT-ALT-€
SHIFT-ALT-=>

ESC

CTRL-V 4
CTRL-V ¥
CTRL-V €«
CTRL-V >

PCW8256/8512 extra characters

EXTRA-,
EXTRA-@
EXTRA-:

\
1

APPEN 4-3

Find string

Replace string

Next find

Previous find

Set/Go to marker (0 to 9)
Go to [block marker

Go to] block marker

Go to next marker

Go to previous marker

Help on/scroll forwards

Help scroll backwards

Edit help off

Hard spaces visible/hidden

Tabs and returns visible/hidden
Insert arrow symbols

Switch between documents in memory
Convert to upper case

Convert to lower case

Insert a space

Insert stored phrase

Access internal printer controls
Screen dump (internal printer)
Caps lock

Shift lock

Exit from edit mode

Up arrow

Down arrow
Left arrow
Right arrow

APPEN 44

(b) Command Mode

The following commands are listed according to a number of categories and
alphabetically within the category for ease of location. The categories are:-

Document handling

Text manipulation

Printer control and printing

Disc Drive selection and cataloguing
Disc file manipulation

File protection

Phrase, Exec and Symbol commands

Miscellany
Key to parameters:

a an ASCII character
dr drive letter
f a filename (may include drive)
af ambiguous filename (may contain wildcards)
newf new filename
oldf old filename
n an integer between 0 and 255
nn an integer between 0 and 65535
®) an optional parameter

Items marked with ' <..>" are mandatory.
Command Abbr. Description

Text file handling

CLEAR - Clear text.

LOAD <f> L Load new file.

MERGE <f> MER Merge file with current text.

NAME <f> N Assign name to current file.

SAVE <f> S Save text.

SAVEB <f> SB Save block.

SPOOL <f> SPON Echo all screen output to a file.
SPOOLOFF SPOFF Turn off echo to file.

SWAP SwW Swap between two documents in

memory.
TYPE <f> T Display file contents on screen.

Text manipulation

FIND F
GOTO <a><nn> G
REPLACE R
NUMBER NUM
NUMBERB NUMB
TAB (col)...(col) -

CAN or CLR key

Printer control and printing

BM <n> -
INTERNAL INT
PARALLEL PAR
PL <n> -
PRINT ® P
PRINTB PB
PRINTER <f> PR
PRINTON PRON
PRINTOFF

SERIAL SER

APPEN 4-5

Find string,

Goto Line/Column number.

Find and replace string.

Number lines of text.

Number lines of text in marked block
only.

Set tabs.

Clear screen.

Bottom margin for printing.

Select PCW Printer.

Select parallel (Centronics) printer.
Page length for printing.

Print file, optionally from disc.
Print marked block of text only.
Load printer driver.

Echo all screen output to printer.

PROFF Turn off echo to printer.

Select serial printer port.

Disc Drive selection, cataloguing and disc formatting

A: A
B: B
C: C
D: D
M: M
DFORM -

DFORMD -

DRIVE <dr> DR
GROUP <n> GR
USER <n> U
CAT (dr)or(grp)or(af) DIR
INFO <af> -

Select drive A.

Select drive B - valid if drive installed.
Select drive C - valid if drive installed.
Select drive D - valid if drive installed.
Select drive M - (PCW only).

Format disc. CF2 or CF2DD format.
Format disc. CPC6128 Data format.
Select drive. - Any drive A-P if
installed.

Select group/user number.

Select group/user number.

Catalogue files. Opt. drive, group,
name.

File information.

APPEN 4-6

Disc file manipulation

COPY <oldf> <newf> -

COPY <af>(<grp>)(<dr>)
ERACOPY <oldf> <newf> ECOPY
ERACOPY <af>(<grp>)(<dr>)
ERASE <af> ERA
RENAME <newf> <oldf> REN
File protection

ACCESS <af> ACC
PROTECT <af> PROT

Phrase, Exec and Symbol commands

EXEC <f> X
LPHRASES

PHRASE KEY
SYMBOL <n> <nl>..<n8> SYM
Miscellany

HELP (subhead) H
PAUSE -

QUIT Q

COPY or (PCW only) [key

Copy file, creating backup.
Copy file(s). Wildcards permitted.

Copy file, erasing old version.

Copy file(s), erasing old. Allows
wildcards.

Erases file(s). Wildcards permitted.
Rename file.

Set file(s) to read-write status.
Set file(s) to read-only status.

Execute file of commands.

LP List defined phrases.
Define phrase or function key.
Re-define a screen character.

Display HELP subheadings (opt.
param in editor only).

Pause (optionally with message).
Quit the editor.

Recall last command typed in.

APPEN 4-7

(c) External utility program commands

The following commands call programs which must be available to the
editor. In other words the specified '.COM!' files must be on one or other of the
discs. These programs are specially configured so that when completed, control
returns to the editor without loss of the original text (See note below). Any
program may be called using the * prefix, and any text in memory will be saved to
a temporary file the name of which will be passed as a parameter, but unless
specifically written to work with the editor, control will not automatically return
to the editor. Typing APED from the CP/M command prompt will re-load the
editor, with any text in memory intact (See note below for single drive CPC6128).

Note: CPC 6128 users with only one disc drive and PCW users who are not using
drive M as the "Temporary’ drive should ensure that any documents are saved
before using these options, as use of these external programs will usually require
the changing of discs in order to run the utility program. On return to the editor,
the document can be reloaded in the normal way.

AC - Compile, link and run C program.

ASM MA Assemble m/c program

CONFIG - Editor configuration utility program.

DCOPY - Copy single sided disc, Utility program.

MM - Maxam II Monitor (full version).

MON - Maxam II Monitor (whichever version
present).

MSM - Maxam II Monitor (small version).

RUNC - Enter C run time system.

SETPRINT SP Printer driver creation utility.

* < progname > - Call a separate program, automatically
passing existing text file as a parameter.

* < progname > < filename > - Call a separate program with given filename.
* < progname >"" - Call a separate program without passing a
filename.

* < drive >: < progname> - Call a separate program from specified

drive.

APPEN 4-8

APPEN 5-1

A5. KEY TRANSLATIONS

These are the codes which must be used in a phrase definition to string
command sequences together.

PCW cpC code PCH cpC code
ALT-@ CTRL-@ 0 ALT-[CTRL-[27
ALT-A CTRL-A 1 ALT-. CTRL-\ 28
ALT-B CTRL-B 2 ALT-] CTRL-] 29
ALT-C CTRL-C 3 - CTRL-£ 30
ALT-D CTRL-D 4 - CTRL-0 31
ALT-E CTRL-E 5 ALT-< CTRL-< 218
ALT-F CTRL-F 6 ALT-> CTRL-> 219
ALT-G CTRL-G 7 ALT-(CTRL-(220
ALT-H CTRL-H 8 ALT-) CTRL-) 221
ALT-1 CTRL-I 237 ALT-% CTRL-% 222
ALT-J CTRL-J 10 ALT-+ CTRL-+ 223
ALT-K CTRL-K 11 ALT-/ CTRL-/ 231
ALT-L CTRL-L 12 ALT-hyphen CTRL-hyphen 227
ALT-M CTRL-M 238 ALT-space CTRL-space 235
ALT-N CTRL-N 14

ALT-0 CTRL-0 15 0 A 240
ALT-P CTRL-P 226 ¥ v 241
ALT-Q CTRL-Q 17 <« < 242
ALT-R CTRL-R 18 > > 243
ALT-S CTRL-S 19 SHIFT-4 SHIFT-4 244
ALT-T CTRL-T 20 SHIFT-¥ SHIFT-V 245
ALT-U CTRL-U 21 SHIFT-€ SHIFT-€ 246
ALT-V CTRL-V 22 SHIFT-> SHIFT-—> 247
ALT-W CTRL-W 23 ALT-A CTRL-% 248
ALT-X CTRL-X 24 ALT-V CTRL-Y 249
ALT-Y CTRL-Y 25 ALT-< CTRL-¢ 250
ALT-Z CTRL-Z 26 ALT--> CTRL--> 251
TAB TAB 9 RETURN RETURN 13
SHIFT-TAB SHIFT-TAB 228 SHIFT-RETURN SHIFT-RETURN 236
ALT-TAB CTRL-TAB 225 ALT-RETURN CTRL-RETURN 236
DEL> CLR 16 ALT-CAN CTRL-CLR 230
SHIFT-DEL-> SHIFT-CLR 229 ALT-CUT CTRL-DEL 232
ALT-DEL-> 5 ALT-COPY CTRL-COPY 234
<DEL DEL 127 copy 224
SHIFT-¢DEL - 211 STOP/EXIT ESC 252
ALT-<-DEL - 212 Enter edit mode 253

SHIFT-COPY SHIFT-COPY 233 Enter command mode 254

APPEN 5-2

APPEN 6-1
A6. SYSTEM ERROR MESSAGES

This section lists error messages relating mainly to disc operation. These are
termed system error messages because they do not relate to any particular
program or command, and may occur at any time,

Disc missing or read fail - Retry Ignore or Cancel?

6] The disc being used has been taken out of the drive. Insert the disc and
press R.

(i) The disc is not formatted.
Press C to cancel the operation. The disc must be formatted using
DFORM before it can be used.

(i) PCW only. This error is given if a CF2DD disc is put into drive A, or the
wrong way round in drive B.

(ivy The disc may be faulty or corrupted. Press R to retry. If the error
persists try re-formatting the disc.

Drive not ready - Retry Ignore or Cancel?

The disc being used has been taken out of the drive. Insert the disc and
press R.

Disc error - Retry Ignore or Cancel?

Seek fail - Retry Ignore or Cancel?

Data error - Retry Ignore or Cancel?

No data - Retry Ignore or Cancel?

Missing address mark - Retry Ignore or Cancel?
Media changed - Retry Ignore or Cancel?

Media change occurred - Retry Ignore or Cancel?

If any of these errors occur the disc may be faulty or corrupted. Press R
to retry. If the error persists try re-formatting the disc.

Write protected - Retry Ignore or Cancel?

The write protect tab is pushed in. Remove the disc, slide the tab out,
and press R.

APPEN 6-2

Disc unsuitable for drive - Retry Ignore or Cancel?

PCW only. The disc in drive B is formatted as a CF2 disc, and so may
only be written to in drive A.

Bad format - Retry Ignore or Cancel?

The disc is not formatted, or is of a non-Amstrad format, or the disc may
be faulty.

File is read only

The chosen file cannot be written to because it has been protected. Use
ACCESS to unprotect the file.

Directory full

The maximum number of files allowed on a disc has been reached. There
may still be room on the disc, so any unwanted files should be deleted.

Disc full

The storage capacity of the disc has been reached. Often this can be
remedied by erasing backup files. Type ERASE *BAK or press ALT-{7
(PCW) or CTRL-f9 (CPC6128).

File not found
File does not exist

There is no file of the chosen name on the disc. Check that the name was
typed correctly, that the correct disc is in the drive, and that the correct
drive is selected.

Bad filename
The combination of characters chosen as a filename is not allowed. Valid
names consists of up to 8 characters, followed optionally by a full stop
and an extension of up to 3 characters. Certain characters are not
allowed.

Maximum number of files open

There is a limit to the number of files that can be open at the same time,
In normal use this limit will never be reached.

APPEN 6-3

Insufficient memory for program

The program has used all the available computer memory. This error will
not occur in normal use.

EXEC file read error

A disc error occurred when reading commands from an exec file. This
could be caused by removing the disc containing the exec file, or by a
faulty disc.

This program will only run under Amstrad CP/M Plus

Arnor CP/M Plus programs will only work on Amstrad computers with
CP/M Plus. In particular they will not run on other CP/M systems. This is
because special use is made of Amstrad specific features to attain the
best performance.

If this message occurs when using an Amstrad computer, which is
possible if some other software is installed, all may not be lost. Contact
Arnor for help.

APPEN 6-4

	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120
	pag 121
	pag 122
	pag 123
	pag 124
	pag 125
	pag 126
	pag 127
	pag 128
	pag 129
	pag 130
	pag 131
	pag 132
	pag 133
	pag 134
	pag 135
	pag 136
	pag 137
	pag 138
	pag 139
	pag 140
	pag 141
	pag 142
	pag 143
	pag 144
	pag 145
	pag 146
	pag 147
	pag 148
	pag 149
	pag 150
	pag 151
	pag 152
	pag 153
	pag 154
	pag 155
	pag 156
	pag 157
	pag 158
	pag 159
	pag 160
	pag 161
	pag 162
	pag 163
	pag 164
	pag 165
	pag 166
	pag 167
	pag 168
	pag 169
	pag 170
	pag 171
	pag 172
	pag 173
	pag 174
	pag 175
	pag 176
	pag 177
	pag 178
	pag 179
	pag 180
	pag 181
	pag 182
	pag 183
	pag 184
	pag 185
	pag 186
	pag 187
	pag 188
	pag 189
	pag 190
	pag 191
	pag 192
	pag 193
	pag 194
	pag 195
	pag 196
	pag 197
	pag 198

