The Complete Machine Code Development Package
For The Amstrad CPC 464

C[%D ==

~HEW0N CONdULTANTS

ZAPP

Z30 Assembly Programming Package
for the Amstrad CPC 464

© Hewson Consultants Ltd. 1985

i

ZAPP

780 Assembly Programming Package

Now you can develop professional quality machine code
software on your Amstrad CPC464 using this fast and
versatile assembly language programming package.

Features include:

* Editor — create, rearrange and modify your source
code mnemonics quickly and easily using the comprehen-
sive text editor.

* Assembler — all the usual assembler facilities plus
temporary labels, some arithmetic operators and limited
forward reference all at a single pass for high speed opera-
tion.

* Monitor — complete “front panel” controls plus
single and multiple stepping and breakpoints.

* Disassembler — symbolic disassembly with external
labels for full analysis of unknown object code. v

~* Hex Editor — hex and ASCII line-by-line dump with
edit facilities.

* File Manager — full file handling facilities including
append source file and assembly from file.

ZAPP was written by Keith Prosser of Hewson Con-
sultants who are leading experts on the use of the Z80
microprocessor in home computer systems and publishers
of many programs for the Amstrad CPC464 and the
Spectrum Plus.

ii

USER MANUAL

Version 0.2
PREFACE

ZAPP is designed to help you get your assembly language
programs working. In addition to containing facilities to
create, edit and assemble source programs. ZAPP has a
powerful monitor with disassembler, single-stepping and
‘front-panel’ capability.

As with all powerful software tools it will take you
some time to master all the facilities which ZAPP provides.
To help you learn these facilities as quickly as possible this
manual is divided into three sections.

Section A gives an overview of ZAPP, showing you
how to enter, assemble and execute a short program and
how to save the source and the object code. The section is
designed to be a simple, readable account and should be
read by beginners and experienced users alike.

Section B is the main description of ZAPP. In this
section all the facilities of the program are defined and
described in detail. Beginners should read this section care-
fully but experienced users may prefer to skim through it
before reading section C.

Section C defines all the special words used in ZAPP
and lists a summary of all commands. Most users will wish
to keep the manual open at this section when working on
the computer.

il

STOP PRESS!

DISC USERS

ZAPP will now run on the DDI-1 disc drive, the file
handling commands being automatically re-directed to the
disc.

Command Effect

1tape Turn on the tape system.
RUN” Load and run ZAPP from tape.
*bye Return to Basic.

l1disc Turn on the discsystem.

SAVE “ZAPP” Save ZAPP bootstrap program ondisc.

SAVE “ZAPPc”,
b,32315,10200 Save ZAPP main program on disc.

Disc users have the following additional command at their
disposal

*era f

This command erases file f from disc.

iv

CONTENTS

Section A
SYSTEM OVERVIEW

Background Material

Getting Started

Using the Editor

Making Changes

Using the Assembler

Using the Monitor

Saving Source Programs and Assembled Code

e e e
NN B W -

Section B
MAIN DESCRIPTION

1.0 STARTING UP

2.0 EDITING THE SOURCE FILE
2.1 The Autolister
2.2 Inserting Lines
2.3 Changing the Current Line
2.4 Editor Commands

3.0 THE ASSEMBLER
3.1 Instruction Format
3.2 Directives
3 Numbers
4 Symbols
3.4.1 Forward References
3.4.2 Permanent Symbols
3.4.3 Temporary Symbols
Operators and Offsets
Listings
End Report

3.
3.

W W W
~1 N

3.8 Errors
3.8.1 Error Codes
3.8.2 Chaining Errors
3.9 Direct Assembly (Command *dir)
3,10 Assembly From File
(Commands *asf, *asf+ and directive file)
3.11 Remote Assembly
4,0 THE MONITOR
4.1 Display Format
4.2 Monitor Commands
4.3 Performing Instructions
4.4 Modifying Registers
4.5 Breakpoints
4.6 Monitor Messages
5.0 THE DISASSEMBLER
6.0 THE HEX MEMORY EDITOR

7.0 FILE MANAGEMENT
7.1 Loading/Appending Source Programs
7.2 Saving Source Programs
7.3 Saving Assembled Code
7.4 Loading Code

Section C
REFERENCE SECTION

1.0 DEFINITIONS

2.0 “*” COMMAND SUMMARY
3.0 EDITING COMMANDS

4,0 ASSEMBLER DIRECTIVES
5.0 ERROR CODES

6.0 MONITOR COMMANDS

vi

SECTION A

SYSTEM OVERVIEW

1.1 Background Material

It is assumed that you know a little about Z80 assembly
language. If you know nothing at all about it, then you’ll
need a book to teach you, although ZAPP is the perfect
system for learning on. There are several books available.

- The standard reference is “How to Program the Z80”
by Rodnay Zaks, published by Sybex and available through
Radio Shack (i.e. Tandy Stores), ISBN No. 0-89588-057-1.
It contains a great deal of information about the hardware
organisation of the microprocessor as well as listing full
details of the instruction set. The beginner might find it
rather formidable because it runs to more than 600 pages.

A rather more readable account is contained in “Z80
and 8080 Assembly Language Programming” by Kathe
Spracklen, published by Hayden, ISBN No. 0-8104-5167-0.
The book starts at a more elementary level and covers the
more important software aspects and ignores the hardware
almost entirely.

1.2 Getting Started
Load ZAPP in the usual way. In the top left hand corner is
a red/blue marker. At the bottom of the screen is the ZAPP
message and the input prompt C> !. The C prompt indi-
cates that you are in the “command/edit” mode (call it “C
mode” for convenience).

At the moment you do not have a source program in
the machine. The block is the “eof marker”, marking the
End Of the source File.

1.3 Using the Editor

To enter a program could hardly be-easier. Simply type in
an assembly language statement, for example:

C>1d a,101

You must leave a space between Id and a and press the
ENTER key at the end of the line. Do not put any other
spaces in the line.

If you type an invalid instruction then you must correct
it because it will not be accepted. To see this type in

C>1d cc,202

The line will not be accepted when the ENTER key is
pressed. Instead the C will change to R (for Re-enter) and
a query will appear at the beginning of the assembly state-
ment. Use the RIGHT arrow key to move the cursor past
the first ¢, delete the letter using the DELETE key and
replace it by a b so as to generate the corrected line:

R> Id bc,202

Press ENTER and the line will be accepted.

Enter the rest of this routine:
C>Id a,101
C> id bc,202
C> Id de, 303
C> call fred
C> ret
C> fred:ld hl,40
C> ret

Notice that everything is neatly “tabbed” in the listing
for you and the lines are numbered, except where the fred
label has been used. Notice also that the red/blue marker
moves down as you enter each line. The marker identifies

3

the “current line” and each new line is inserted above the
“cutrent line”,

1.4 Making Changes

You may use the UP, DOWN, LEFT and RIGHT arrow
keys to move the current line marker up and down the list-
ing. The line can then be edited using the alphanumeric
keys to insert characters, the LEFT and RIGHT arrow keys
to move the pointer and the DEL key to delete a character.
The COPY key can then be used to copy the current line to
the bottom of the screen.

To DELETE a line in the program make it current by
using the UP or DOWN arrow keys and press DELETE
followed by CLR.

Suppose that in the line

fred:ld hl,40
you wanted to change the number to 404. In such a small
program you could very easily use the ARROW keys to
make it current, but for large programs (ZAPP can handle
over 3000 lines), there are two convenient methods
available.

The first method to make a line number current is by
entering an equals sign (=) followed by the line number.
Try entering

C> =6
and notice that the line is made current. =01is very useful for
getting to the end of a long program as it always makes the
last line in the file (the eof line) current.

The second method is to ask ZAPP to search for a par-
ticular sequence of characters by entering a query sign (?)

4

followed by the sequence required. For example to make
the line

fred:1d hi,40
current you could type any of these:
C> red:
C> ?hl
C> 740 €tc.
A search always starts at the line below the current line
and pressing ENTER repeats the search. Try typing
C>2d
and press ENTER several times to see the effect.

1.5 Using the Assembler
Having entered the program the command
C> *asm
assembles it. Assuming that no errors are found the
message
FROM: 04BEh (1214)
TO: 04CDh (1229) (16 bytes)
is given, telling you the code was assembled at address
04CD (1214 in decimal) and that it occupies 16 bytes.

If an error is detected assembly stops and a flashing 7 is
displayed. There are ways described in Section B to correct
the program and to continue assembling or you may press
ESC, correct the error using the editor and then reassemble
from the beginning.

1.6 Using the Monitor

It is possible of course to write a program in assembly lan-
guage which is free of assembly errors but which does not

5

function as the programmer intended when it is executed.
These kinds of errors are often called “bugs” and they can
sometimes be extremely difficult to identify.

For this reason ZAPP includes a powerful single step
and multi step monitor which will either step through a
machine code program one instruction at a time or execute
a group of instructions in one step if required. At each step
the monitor displays the current status of the Z80 registers.

To invoke the monitor enter the command:
C> *mon
The prompt changes to M> to indicate the monitor is
active. The monitor begins at the first instruction i.e. 1d
a,101 and prints it in disassembled and hex form. Below this
is printed the values in the registers and flags. The format is:
instruction address hexbytes

xAFx xBCx xDEx xHLx flags
xIXx xIYx xSPx (SP)

(SP) is the top item on the stack.

Pressing ENTER causes the instruction to be per-
formed. If you have the routine listed in Section 1.2 in your
machine, assemble it, enter the monitor and press ENTER
three times, observing the values in the registers changing
as each instruction is executed. Note that the numbers
in the disassembly are in decimal, but the registers are
displayed in hex.

You should now have the instruction “call fred” dis-
played. Press ENTER again. The instruction “fred:ld
hl,404” is displayed because pressing ENTER for a “call” or
“rst” instruction causes the called routine to be executed
one step at a time just as if it were part of the main program.

6

Alternatively pressing ENTER + CAPS SHIFT will cause
the monitor to execute all the steps in the called routine at
one go. This is very useful for skipping over routines you
know you can trust.
Press ENTER twice more. Performing the final “ret”
returns you to C mode with the message:
EXIT OK

indicating all is well.

1.7 Saving Source Programs and Assembled Code

Having written and checked the routine the next job is to
save it. You may save your source programs or the
assembled code.

To save the source program the command is:

C> *ssr filename

You can save the object code program using the
command:

C> *scd filename

You may use any filename you choose up to 16
characters, not including a comma or semicolon.

There are many more facilities in ZAPP described in
the next section. You will find that ZAPP is of enormous
help in developing machine code programs, whether you
are an experienced programmer or a complete novice.

SECTION B

Main Description

1.0 STARTING UP

Load ZAPP in the normal way. At the top of the screen is
the EOF marker. At the bottom is the ZAPP message and
the prompt:

C>!

The letter in the prompt (C in this case) indicates the
mode in which ZAPP is operating. C indicates “command/
edit” mode, or C mode. This mode is used for editing the
source program, to access the other modes and to enter “*”
commands.

2.0 EDITING THE SOURCE FILE

The editor maintains the source program as a list of lines.
At any time there is a “current line”, indicated by a red/blue
block, where editing takes place. The editor is controlled by
the following keys:

COPY Modify current line

LEFT ARROW Move current line pointer up
about one screenful.

RIGHT ARROW Move current line pointer
down one screenful.

DOWN ARROW Move current line pointer
down one line.

UP ARROW Move current line pointer up
oneline.

DELETE then CLR Delete current line.
10

The above keys only have the indicated effect if they
are the first key pressed in a line, i.e. when the “!” is
displayed.

The LEFT and RIGHT ARROW and DELETE keys
are also used to correct a line in the editing area at the bot-
tom of the screen. Pressing CLR clears the line.

2.1 The Autolister

The autolister lists part of the source program containing
the current line whenever the source is edited. Pressing
ENTER on its own also forces an autolisting.

2.2 Inserting Lines

Valid assembly instructions (i.e. those not containing a syn-
tax error) are inserted into the source program immediately
above the current line. If an error is detected in the line then
it is not accepted and must be corrected.

2.3 Changing the Current Line

This may be done using the ARROW keys or particular
lines may be made current:

by LINE NUMBER
Type the line number (given in the listings) preceded
bya“=",e.g.
C> =100
Line 0 is conventionally the last line in the file (i.e. the
eof line), so
C>=0
is a quick way of getting to the end of the program.
by CONTEXT
Type the item to be located preceded by a ?, e.g.
C> ?string

11

The search begins with the line BELOW the current
line for any line containing the string. If the string is not
found the current line is not changed. The search may
be repeated as often as required by pressing ENTER.

2.4 Editor Commands

*del n1,n2 —delete lines nl1 to n2 inclusive (n2=0 for
end of file).

*eof — print highest address used by source file.

*new [n) — delete source program from memory and

reset base of source areaton.

3.0 THE ASSEMBLER

3.1 Instruction Format
Instructions take the form:
[LABEL:] MNEMONIC [;COMMENT]

or ; COMMENT

The items in square brackets are optional. The ZAPP
assembler recognises the standard Z80 instruction
mnemonics, with the exception that ex af,af’ must be writ-
ten without the quote, i.e. ex af,af. ZAPP recognises the
short forms add s, ade s and sbe s for add a,s, adc a,s and
she a,s.

3.2 Directives

In addition to the Z80 instructions ZAPP also recognises
the following directives:

defbn — assemble as the byte value n
defw nn —assemble as the double byte nn (low
byte first)

12

org nn —assemble subsequent instructions at
address nn and above

defm “string —assemble as the character codes for the
characters in the string specified

list - enable listing (DEFAULT)

nist — disable listing

prnt — send listing to printer

scrn — send listing to screen (DEFAULT)
base — set base address for saving code

label:equnn - set symbol equivalent to number nn
file filename - assemble from file

3.3 Numbers
Numbers may be written in decimal, hex, character code or
represented by a symbolic name (symbol). Hex numbers
must be preceded by an ampersand or begin with a digitand -
end witha ‘h’, e.g. .

&7FFE or ODF10h

Most character codes can be represented by their
associated character preceded by a double quote, e.g.

Ida,“a isequivalentto Ida,65
Index register offsets must be decimal in the range —128
to +127.
3.4 Symbols

Symbols (or labels) are mnemonic names given to numbers
to make the program easier to understand and write. A
symbol is defined, (i.e. made equivalent to a number) by
using it as a label. In the instruction

label:equ nn
the symbol used as the label becomes the same number nn.

13

In any other instruction the label symbol becomes equiva-
lent to the assembled address of the instruction, e.g.

43 org 9000h
fred:ld a,100

the symbol “fred” is made equivalent to the value 9000h.

3.4.1 Forward References
Symbols may appear as operands before they are defined,
e.g.

37 inca

38 jr nz,jim

39 1d b,45
jim:ld c,45

In this case the use of “jim” in the jr instruction (line
38) precedes the definition of jim in the line jim:ld c,45 (line
40). The use of a symbol before it is defined is called a “for-
ward reference”. Forward references may be used freely in
ZAPP, except that they may not take an offset, or be used
where 8 bit data is required, except for relative addresses.

3.4.2 Permanent Symbols

Symbols like “fred” and “jim” above are called “permanent
symbols”, because they stand for the same value through-
out a program. They may be defined once only. Such sym-
bols must begin with a letter and may consist of up to six
characters. Comma, semicolon and space may not be used
in symbols.

3.4.3 Temporary Symbols
There are ten “temporary” symbols, represented by the
digits 0-9. They are very useful because they save the need

14

to invent unique names for trivial loops, etc and because
they save space in the symbol area. They may be redefined
any number of times in one program, only the most recent
use of the symbol being active.

For example:
2:inc hl First: inc hl

72 cp (hl) 72 cp (h)

73 jr nz;:2 73 jr nzFirst

74 1d a,(de) = 74 ld a,(de)
2:cp (hl) Second:cp (hl)

76 inc hl 76 inc hl

77 jgr z,:2 77 jr z,Second

Note that temporary symbols when used as operands
are preceded by a colon to distinguish them from integers.

To make a forward reference with a temporary symbol
add an “f” as a suffix. e.g.:

3:icp (ix-1)
48 jr z,;3f
49 dec hi

3:cp (hD)

The symbol :3f refers to the label 3: on the cp (hi)
instruction. Using the forward reference means the label on
the 3:cp (ix-1) instruction is no longer accessible.

3.5 Operators and Offsets
The addition and subtraction operators (+ and —) may be
used freely in ZAPP except in an operand which is a for-
ward reference. The following instruction for example is
illegal if fred is a forward reference.

jr fred + 10

15

The most significant byte and least significant byte

operators are > and < respectively, i.e.

>1234h = 12h

<1234h = 34h
3.6 Listings
The listing will normally be sent to the screen or printer as
set by *prnt and *scrn commands. Switching the listing off
using the nist directive greatly increases assembly speed.
The directive list switches listing back on.

The listing displays the instruction, the assembly
address and the hex bytes that make up the machine code
instruction. However for relative branches the absolute
address is printed in brackets, e.g.

13 jr 1000h 1003 18<1000>

For forward references the assembled bytes are not
known and such bytes are indicated by an asterisk (*) after
the address.

3.7 End Report

At the end of assembly any forward references left un-
defined are printed. This is followed by the report:

BASE: xxxxh (ddddd)

TOP: xxxxh (ddddd) (ddddd bytes)

The BASE address is set by the *asm command or base
directive.

The TOP address is the last byte assembled. Unless the
org directive is used to plant code outside these addresses
then these addresses are the lowest and highest used by the
assembled code. The BASE and TOP addresses are used by
many commands as the default values if parameters are
omitted.

16

3.8 Errors
If an error is detected at assembly time then assembly stops
with a flashing ? and a two digit hex code. At the bottom of
the screen an X> input prompt is displayed, and the follow-
ing keys may be used:

COPY -—correctandretry line.

ENTER - continue with next line

ESC -abandonassembly

Some errors return immediately to the C prompt as the
assembled code may be corrupt even after correcting the
error.
, If any errors remain uncorrected after assembly then
the message:

ERROR(S) IN ASSEMBLY

is given, with the End Report.

3.8.1 Error Codes
The following two digit codes are given with a flashing ? to
indicate an error.
200 - nostatement with label
7E0- nolabel defined for this temporary symbol
7E1- labelis aregister name etc.
7E2— permanent label already defined
?F1- errorin first operand
7F2- errorinsecond operand
77— unrecognised instruction
7DD - invalid operands.
The DD error can be generated in the following cases:
1) anillegal register or number (e.g. sbe, de,bc or im 4)

17

2) aforward reference for 8 bit data
3) aforward reference with an offset

?7FD - relative address range exceeded.
?FE— chainingerror
?7FF- chaining error

3.8.2 Chaining Errors

ZAPP is a “one pass” assembler, i.e. it works through the
source file once only, creating all the object code as it goes.
This makes it faster than other assemblers but it means that
“chaining errors” can sometimes occur. ZAPP chains
together forward references to symbols and then returns to
fill them when the symbol is defined. If at some stage ZAPP
cannot complete the chain (because for example it needs to
store a relative address greater than FF in a one byte loca-
tion) then a chaining error occurs. In the following example
a chaining error will occur if there are more than FF bytes
in the object code between the “jp tom” and the “jr tom”
instructions.
ip tom

33 93 33 33 39 3

99 53 99 35 3 3

jr tom

33 93 33 35 % 3

33533 33 3 95 9

tom: 1d a.100
The best cure in this case is to use a second symbol and
equivalence it to the main symbol when it is defined, e.g.:
ip tom

39 35 93 33 9 3

37 93 33 93 2 3

jr tom1: do this only if jr tom causes a chaining
3% 9T 9% 99 %Y N error

35 99 33 33 % M

18

tom :1d a,100
toml: equ tom

3.9 Direct Assembly (Command *dir)

In direct assembly mode assembly instructions entered at
the keyboard are assembled immediately. Direct assembly
mode is indicated by the prompt letter D. To exit from
Direct mode type the directive “end” or press ESC.

3.10 Assembly From File

(Commands *asf, *asf+ and directive file)
ZAPP has the ability to assemble source programs saved on
disc or tape. This allows very large source files to be assem-
bled. You may not use the “file’ assembly directive within
source programs that are themselves assembled from file.

3.11 Remote Assembly

In remote assembly the code is not planted at the address
where it will be executed. For example a routine can be
developed in high RAM and finally be remotely assembled
to be loaded and run in the RAM occupied by ZAPP. Note
that code which has been remotely assembled should not
normally be run or single stepped using ZAPP.

4.0 THE MONITOR

4.1 Display Format

The monitor displays instructions in disassembled and hex

form, together with the address and the register values

BEFORE the instruction is performed. The format is:
[LABEL.:] instruction address hex-bytes
xAFx xBCx xDEx xHLx cfzfpfsf
xIXx xIYyx xSPx (SP)

19

If there is a symbol defined as the address of the
instruction it is printed as a label. 16 bit numbers are printed
in decimal. Relative addresses are shown as the absolute
address in hex thus:

djnz fred<xxxx>
The address and bytes are shown in hex.

xAFx etc. stands for the value of the indicated register
pair in hex. cf, zf, pf and sf stand for the values of the carry,
zero, parity and sign flags.

4.2 Monitor Commands

The monitor is controlled by the following commands and
keys:

ENTER - perform instruction
ENTER +

CAPS SHIFT - perform call/rst subroutine
no — skip instruction

af nn —set af register pair to nn
benn | — set bcregister pair tonn

de nn — set de register pair to nn
hlnn — set hl register pair to nn

sp nn — set stack pointer to nn
pcnn — set program counter to nn
ann —setregister atonn

fc —complement carry flag

fz ~ complement zero flag

fp — complement parity flag

fs — complement sign flag

*hex nn — display/edit a hex dump of memory
run — run program

20

call nn —call routine
brk [n,][addr] - set/display breakpoints
brun —break and run

4.3 Performing Instructions (ENTER or CAPS SHIFT

+ ENTER)
Pressing ENTER performs the instruction. “call” and “rst”
instructions continue by single stepping through the called
routine.

Pressing CAPS SHIFT + ENTER has the same effect
as ENTER for instructions other than call or rst. For these
instructions it causes the call to be performed, executing the
routine before returning to the monitor. Note that in this
case the return address is inside ZAPP and the routine
should not use the return address internally.

4.4 Modifying Registers (a, af, bc, de, hl, sp, ix, iy, pc)
After modifying a register or flag the monitor redisplays the
instruction and registers. If the number is omitted or invalid
then the register is not changed.

4.5 Breakpoints (brk, run, brun)

Breakpoints are used to restart the single step monitor after
the monitor “run” command. This is particularly useful for
testing loops etc., for example:

start: 1d c,”a
2 Id b,26
0. 1d a,c
4 call & bbsa
5 inc c
6 djnz :0
fini: ret

21

This routine prints the alphabet. Single stepping
through is tedious and unnecessary once you are sure the
loop works correctly. After going round the loop a few
times, the command:

M?> brk fini

sets a breakpoint at the address of the “ret” instruction. The
command

M> run
runs the routine from the point reached up to the normal
exit or a breakpoint. If a breakpoint is met single-stepping
restarts.

Up to four breakpoints may be set, numbered 0, 1, 2
and 3. If no breakpoint number is specified breakpoint 0 is
used. If no parameters are used with the command the
current breakpoint addresses are displayed only.

The command “brun” means “break and run” and sets
a breakpoint (number 3) at the address of the next instruc-
tion and then “runs” the routine.

4.6 Monitor Messages
The following messages are generated by the monitor:
1) SP WARNING
This indicates that more values have been popped from

the stack than have been pushed onto it since the monitor
was last entered.

This is a warning only and does not stop the monitor.

22

2) EXIT OK

This message indicates that the routine has terminated
correctly.

3) BAD EXIT - STACK ERROR

This message indicates that the stack is not correct
although the routine has terminated.

4) BAD OPCD AT xxxxh (ddddd)

This indicates that the instruction at the indicated
address is not a valid Z80 instruction.

5.0 THE DISASSEMBLER

The disassembler is available using the command *dis in C
mode. Starting at the specified address the disassembler
begins disassembling the code, giving the instruction,
address and hexbytes. The disassembly may be sent to the
printer by using the *prnt command.

6.0 THE HEX MEMORY EDITOR

The contents of the memory may be edited by the command
*hex in C mode or from the monitor. The editor displays up
to 8 bytes on a line, each line terminating at an address
xxx7h or xxxfh. A dump of the characters for the codes
between 32 and 127 is also given.

At the end of each line displayed the prompt H> is
given, pressing ENTER displays 8 more bytes. Pressing
ESC exits from the editor.

23

Typing a number after the H> prompt allows the
memory to be altered beginning at that address. The
address and current contents of the byte are displayed and
you can alter the contents by pressing two hex digits. Pres-
sing ENTER moves onto the next byte. Pressing UP-
ARROW moves to the previous byte. Pressing ESC exits
from the editor.

7.0 FILE MANAGEMENT

7.1 Loading/Appending Source Programs

The command *Isr f loads a source file, erasing any source
in RAM. The command *asr f loads a source file and
appends it —i.e. adds it to the end of a source in RAM.

The message
Not source format

is given if the loaded file does not appear to be a valid source
program. :

7.2 Saving Source Programs
The command

*ssr f
is used to save source programs.

7.3 Saving Assembled Code
The command
*scd f[,n1][,n2]]
saves the area of memory between the specified addresses.
It is not possible to save code in auto-run form from ZAPP

— you must return to BASIC and save it from there. nl
defaults to the BASE address, and n2 to the TOP address.

24

7.4 Loading Code
The command
*led f,n
loads the specified file at the address given.

25

26

SECTION C

27

QUICK REFERENCE SECTION

1.0 Definitions
This part of the manual is for instant reference to the
facilities in ZAPP. Each command is described as follows:
1) The command and its format,
2) The use of the command.
3) The parameters and defaults.

The parameters are either numbers (m, nl and n2)
filenames (f) or line numbers (L1, L2). Filenames are used
in saving, loading and veryifying commands. Filenames
may be omitted for loading and verifying.

Numeric parameters may be written as a decimal, hex
or symbol, with offset. Symbols must be defined. The form
(nn) may also be used. In this case the number passed as a
parameter to the command is the contents of the 16 bit
location whose address is given by nn.

In the following description a numeric parameter in
square brackets, i.e. [nn} is optional. The default value
depends on the command in question.

The message

Parameter error
is given when the parameter passed is badly formed, an
undefined symbol or out of range.

2.0 “*” COMMAND SUMMARY

*asf ff,[n1][,n2]] Assemble source file f planting code at
address nl. (Default = eof + 128). If n2
given then code is generated suitable for
relocation at that address.

28

*asf+f

*asm [n1][,n2}
*asm+

*asr f

*bye

*cat
*del L1,1.2

*dir [nn]
*dis [nn]
*do [nn]

*eof
*ledf,n
*lsrf

*mon [nn]

*new [nn}

*num nn
*prnt

Assemble source file f, continuing from
end of last assembly.

Assemble source program in memory. nl
and n2 as for *asf.

Assemble source program in memory,
continuing from end of last assembly.

Append source file f to source program in
memory.

Return to BASIC. (Re-enter ZAPP using
CALL 36000).

Catalogue tape or disc.

Delete lines L1 to L2 inclusive (L2 = 0 for
end of program).

Enter ‘direct assembly’ mode (default =
TOP +1).

Disassemble memory at nn (default =
BASE).

Call machine code routine at nn (default =
BASE).

Give top address of end of source program
Loadfile fataddressn
Load source program £

Enter monitor with PC = nn (default =
BASE)

Delete source program and reset base
address of source area to nn (default = no
change)

Print value of nn in hex and decimal
Direct output to printer

29

*scd f[,[n1][,n2]] Save memory from nl to n2 inclusive
(defaultsn1 = BASE, n2 =TOP)

*sps nn Set stack pointer for running or monitoring
code routines

*ssrf Save source program

*syms Display permanent symbols and their
values

*call [nn] Call routine at nn (default = BASE).
(Disabled if errors or source program
changed).

3.0 EDITING COMMANDS

The editor maintains the source program as a list of lines.
At any time there is a “current line”, indicated by a red
block, where editing takes place. The editor is controlled by
the following keys:

COPY Modify current line
LEFT ARROW Move current line pointer up
about one screenful.

RIGHT ARROW Move current line pointer

down about one screenful.

DOWN ARROW Move current line pointer

down one line.

UP ARROW Move current line pointer up

one line.

DELETE the CLR Delete current line.

The above keys only have the indicated effect if they
are the first key pressed in a line, i.e. when the “!” is dis-
played. The LEFT and RIGHT ARROW and DELETE
keys are used in the middle of a line to correct the line.

30

Pressing CLR clears the line.

Editor Commands:

*del n1,n2 - delete lines n1 to n2 inclusive (n2 = 0 for end of
file).

*eof — print highest address used by source file.

*new[n] - delete source program from memory, resetting
start address of memory.

4.0 ASSEMBLER DIRECTIVES

In addition to the Z80 instructions ZAPP also recognise the
following directives:

defbn — assemble as the byte value n

defw nn — assemble as the double byte nn (low
byte first)

org nn —assemble subsequent instructions at
address nn and above

defm “string —assemble as the character codes for the
characters in the string specified

list —enable listing (DEFAULT)

nist — disable listing

prnt —send listing to printer

scrn —send listing to screen (DEFAULT)
base — set base address for saving code

label:equnn -set symbol equivalent to number nn
file filename - assemble from file-

31

5.0 ERROR CODES

700 - nostatement with label

?E0- nolabel defined for this temporary symbol
?E1- labelis aregister name etc.
?7E2— permanent label already defined
?F1- errorinfirst operand

?F2— errorinsecond operand

77— unrecognised instruction

7DD - invalid operands.

7FD - relative address range exceeded.
?FE- chaining error

?FF- chainingerror

6.0 MONITOR COMMANDS

ENTER — perform instruction
ENTER +

CAPSSHIFT - perform call/rst subroutine
no — skip instruction

af nn - set af register pair to nn
bcnn —set beregister pair tonn
de nn — set de register pair tonn
hl nn — set hl register pair tonn
sp nn — set stack printer to nn
pcnn — set program counter tonn
ann —setregisteratonn

fc — complement carry flag

fz — complement zero flag

fp — complement parity flag

32

fs — complement sign flag

*hex nn — display/edit a hex dump of memory
run - run program

call nn — call routine

brk [n,][addr] - set/display breakpoints

brun —break and run

33

Printed by Powage Press, Aspley Guise, Milton Keynes MK17 8HF.

ZAPP

780 Assembly Programming Package

Now you can develop professional quality machine code
software on your Amstrad CPC464 using this fast and
versatile assembly language programming package.

Features include:

* Editor — create, rearrange and modify your source
code mnemonics quickly and easily using the comprehen-
sive text editor.

* Assembler — all the usual assembler facilities plus
temporary labels, some arthimetic operators and limited
forward reference all at a single pass for high speed opera-
tion.

* Monitor — complete “front panel” controls plus
single and multiple stepping and breakpoints.

* Disassembler — symbolic disassembly with external
labels for full analysis of unknown object code.

* Hex Editor — hex and ASCII line-by-line dump with
edit facilities.

* File Manager — full cassette handling facilities
including append source file and assembly from file.

- ZAPP was written by Keith Prosser of Hewson Con-
sultants who are leading experts on the use of the Z80
microprocessor in home computer systems and publishers
of many programs for the Amstrad CPC464 and the
Spectrum Plus.

	pag 00 - 0
	pag 00 - 1
	pag 00 - 2
	pag 00 - 3
	pag 00 - 4
	pag 00 - 5
	pag 00 - 6
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27
	pag 28
	pag 29
	pag 30
	pag 31
	pag 32
	pag 33
	pag 34
	pag 35

