FTL Modula-2

Fast Interactive Modula-2 Compiler

280 User Manual

Copyright © Dave Moore 1987 & HiSoft 1987
Published exclusively in Europe by HiSoft

First printing August1987

ISBN 0 948517 07 7

Set using an Apple Macintosh™ and Laserwriter™ with Microsoft Word™.

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

Table of Contents

Z80 User Guide

1 Introduction 1
2 Hardware Requirements 3
3 Installation 5
3.1 Amstrad Machines 5

: 3.1 Getting started on an Amstrad PCW 9512 5
3.12 Getting started on an Amstrad PCW 8512 7

3.13 Getting started on an Amstrad PCW 8256 9

314 Getting started on an Amstrad CPC 6128 13

3.2 Gefting Started Quickly on a non-Amstrad Machine 15

3.3 Compiling and Running Your First Program 18

34 SETSEARC in Detail 19

35 SETTERM in Detail 21

3.6 The Files on the Distribution Disk 22

FTL Modula-2 280 - Table of Contents

4 Compiling and Linking

29

4.1 Compiling Programs 29

4.1.1 Pseudo-Comments 32
4.2 Linking Programs 32

421 Magic Numbers 35

422 Order of Execution of Main Program Parts 36
4.3 Linker Output 37
4.4 Linker Options 38

441 Options for Debugging 42

442 Options for ROM-able Code K]
The Editor 45
5.1 The Main Edit Menu 45
5.2 Basic Editing Commands 47
5.3 Block Moves and Labels 51
5.4 Command Repetition 52
5.5 Macros _ 53
5.6 Key Definitions 54
5.7 The Position File 54
5.8 Stopping Macros 54
The Library Manager 55
6.1 Compiling Library Files 56

FTL Modula-2 Z80 - Table of Contents

7 Assembling Programs

57

7.1 Expressions 59
7.2 The Instructions 60
7.3 The Pseudos 63
74 Parameter Passing Conventions é5
7.5 Limitations 66
8 The Utility Programs 67
8.1 The LIST Program 67
8.2 The Precedence Programs 68
8.3 The HiSoft 1k Utilities 69
9 The Standard Modules 73

9.1 The Standard Modules are Ordinary Modules (Almost)74

9.2 A Quick Tour

9.3 Terminal Input-Output: Terminal

94 Low level File Input-Output: Files

9.5 Byte Oriented Input-Output: Streams

9.6 Formatted Input-Output: InOut, RealinOut, SmalliO
9.7 Memory Allocation: Storage

9.8 Command Line Processing: Command

9.9 Directory Search: GefFiles

9.10 Sorting Data: Sort

75
77

79
80
83
86
87

89
90

FTL Modula-2 280 - Table of Contents

9.1 Converting Between Data Types: Conversions 92
9.12 Calling Another Program: Chain, SetUpCall 92
9.13 Some Low Level Modules: FastMove, IntLogic 93
9.14 The Module SYSTEM 94
9.15 Direct CP/M Calls: CPM, CPMBIOS 98
9.16 Credting Processes: Processes 98
9.16.1 The Basic Procedures %9

9.16.2 The Pre-packaged Procedures 102

9.18 String manipulation: Strings 106
9.19 Debugging Modula-2 programs: Debug 107

10 Memory Layout 109
10.1 Real Number Formats 112
10.2 Set Formats 113

11 Hints for Efficient Programs 115

FTL Modula-2 280 - Table of Contents

FTL Modula-2
Z80 User Manual

1 Intfroduction

This is the user guide for the Z80 CP/M compiler. It reflects the state
of the compiler at version 1.24. If you have a later version, consult
the README . NOW file for details of more recent additions. In this
manual, you will find detailed descriptions of the installation of the
compiler on your computer, of the standard modules that come
with this particular version of the compiler, and of the restrictions
and extensions to the compiler in this version.

There is a separate user manual for each version of the compiler.
The reference manual is common to all versions. To find information
about the Modula-2 language (as implemented by FTL), refer to the
reference manual. For details of using it on a particular type of
machine, consult the user manual for that version.

280 User Guide FIL Modula-2 Page 1

FiL Moduia-2

280 User Guide

2 Hardware
Requirements

To run this compiler, you will require a Z80 processor running
CP/M. A 58k CP/M system is desirable, with a TPA that extends up
to b000. If your TPA is less than this, you are likely to be harassed by
the out of memory error message.

To determine if your TPA is large enough, run the program
MEMCHECK. Once you have run this program, you can delete it from
your Modula-2 system disk. This program errs on the conservative
side, so that, even if it tells you that you do not have enough
memory, it may still be possible to run the compiler. You may need
to use the compiler flag /s which reduces the amount of memory
used by the compiler.

Secondly, you will almost certainly need at least two disk drives. It
should be possible to run on a single large capacity floppy disk drive
- we have used it on a 1 Megabyte double density, double sided eight
inch drive. You only need one floppy drive if you have a hard disk or
a substantial RAM disk.

The compiler will not run under CP/M86 or CP/M68K, unless your
system has a dual processor and can also run Z80 (note - not 8080)
code. We hope to have versions for the machines on which these run
in the future. An MSDOS version of the compiler is available from
HiSoft now. A 68000 version for the Atari ST should be available
soon. Other 68000 versions will follow.

To run the editor you will need a terminal which can perform some
basic editing functions. You will need a terminal which can perform
insert and delete line functions and some form of highlighting,
inverse video, or underlining. It is also nice if your terminal can use
graphics characters to draw boxes.

If your terminal is unable to delete and insert lines, there is a dumb
editor for use on dumb terminals. This will work provided that your
terminal can position the cursor, but is slower than the standard
editor because it must re-draw the screen more often.

280 User Guide FTL Modula-2 Page 3

If you have a memory mapped video, you can probably modify one of
the versions of the screen10 module supplied with the optional
Editor/Toolkit disk to produce a memory mapped version of the

editor for your system.

Page 3 FIL Moduia-2 ~280 User Guide

3 Installation

3.1 Amstrad Machines

If you don't have an Amstrad CPC or PCW please skip to Section
3.2. FTL Modula-2 is a sophisticated piece of software and the cost of
its power is that installation isn't as simple as with a BASIC
interpreter or a simple Pascal compiler. An hour spent now
{hopefully it wouldn't take that long) will soon pay itself back in the
lack of frustration as you learn how to use the system to its full
rather than wasting your time swapping disks and looking through
this manual to work out which keys to press. Above all don't be put
off by the fact that you don't understand the precise reasons for
setting your disks up as described; after a short time familiarizing
yourself with the system the later sections should make sense and
we hope you will appreciate the reasoning behind our suggestions.

3.1.1 Getting started on an
Amstrad PCW 9512

Naturally it is easier to run FTL Modula-2 on the PCW9512 than
the earlier Amstrad machines with the possible exception of the
PCW8512.

1. To make a backup of your distribution disks format a disk in
CF2DD format using DISCKIT and remove this from drive A; this will
be your backup disc.

2. Make sure you are logged into drive A and then for each side of the
master disks type

WP A: M: -Q

This will copy all of the files onto the ramdisk.
Insert your backup disk and type:

M:WP M: A: -Q

This will copy all the files on this side of the master disk onto your
backup.

280 User Guide FIL Modula-2 Page §

Now type WD M:

Then, when prompted, type A for all. This removes all the files from
the ramdisk so that you have plenty of room for the next side.
Repeat this process for all four sides.

Mark your backup disk FTL Modula-2 Backup and, to be safe, make
a copy of this entire disk using DISCKIT. This new disk will be your
work disk. You can now put the distribution disks and your original
backup away safely.

You can now delete the files MEMCHECK.COM, MEDUMB.COM,
SETTERM.COM, TERMINAL.DAT and UsQ.coM from your work disk as

these are not required.

The method of working that we suggest initially is to have all the
parts of the system that you need together with the .syu files
output by the compiler on drive M and your source files and .REL
files on a real disk in drive A. To set this up we need to run the
SETSEARC program whilst logged into drive A. This will ask a number
of questions about disk drives, answer @ [ENTER] to all of these.
The program will then ask if you want listing on or to change disks
during links ; reply N[ENTER] to these.

We have supplied a submit file called PROF8512 . sUB which copies the
files that you normally need to M (the same file works for both the
8512 and 9512) but to run this we need the CP/M suUBMIT utility, so
copy this to your work disk. .

Now you can type PROF8512 .S from the A> prompt and the files will
be copied to drive M. The other files on your work disk are not
always needed (they are mainly the source of the libraries and the
assembler) so you can delete these if you wish.

The next step is to log on to drive M using M:. From now on we will
remain logged into this drive. To compile the LIST.MOD example

program type
M2 A:LIST.MOD
Then, after the compiler has finished,

ML A:LIST

Page 6 FIL Moduia-2 Z80 User Guide

This will create the file LIST.CoM on drive M: and you can run this by
typing .

LIST A:LIST.MOD CON:/O
which will list the program on the console.

When you next want to load FTL Modula-2, boot normally. It is a
good idea to use SETKEYS KEYS.WP as the editor uses many of the
same keys as WordStar; so the cursor keys will move the cursor for
example. Then log into drive A and type PROF512.s. Finally log onto
drive M. You can now try out the editor and start writing your own
programs, using for example:

ME B:TEST.MOD

but we recommend reading the Language Reference Manual and the
sections on the Editor (Section 5), Compiling and Linking (Section
4) and the library modules (Section 9) first.

If you wish you can copy the .EMs file from your Amstrad master
disc to your Modula-2 disc and rename PROF8512.SUB to
PROFILE.SUB and the files will be copied to the ramdisk
automatically on boot.

3.1.2 Getting started on an
Amstrad PCW 8512

Naturally it is easier to run FTL Modula-2 on the PCW8512 than
the earlier Amstrad machines.

To make a backup of your distribution disks format a disk in CF2DD
format using DISCKIT and leave this disk in drive B. Now for each of
the 4 sides of the distribution disks type

wp a: b: —-gq

and this will make a backup on just one disk. Mark this disk FTL
Modula-2 Backup and, to be safe, make a copy of this entire disk
using pISCKIT. This new disk will be your work disk. You can now
put the distribution disks and your original backup away safely.

You can now delete the files MEMCHECK.COM, MEDUMB.COM,
SETTERM.COM, TERMINAL.DAT and UsQ.coM from your work disk as
these are not required.

280 User Guide FTL Modula-2 Page 7

The method of working that we suggest initially is to have all the
parts of the system that you need together with the .syu files
output by the compiler on drive M and your source files and .REL
files on a real disk in drive B. To set this up we need to run the
SETSEARC program whilst logged into drive B. This will ask a number
of questions about disk drives, answer @ [ENTER] to all of these.
The program will then ask if you want listing on or to change disks
during links ; reply N [ENTER] to these.

We have supplied a submit file called PROF8512. suB which copies the
files that you normally need to M:, but to run this we need the CP/M
SUBMIT utility so copy this to your work disk.

Now you can type PROF8512.s from the B> prompt and the files will
be copied to drive M. The other files on your work disk are not
always needed (they are mainly the source of the libraries and the
assembler) so you can delete these if you wish.

The next step is to log on to drive M using M:. From now on we will
remain logged into this drive. To compile the LIST.MOD example

program type
M2 B:LIST.MOD

Then, after the compiler has finished,

ML B:LIST

This will create the file L1ST.CcoM on drive M: and you can run this by
typing

LIST B:LIST.MOD CON:/O

which will list the program on the console.

When you next want to load FTL Modula-2, boot normally. It is a
good idea to use SETKEYS KEYS.WP as the editor uses many of the
same keys as WordStar; so the cursor keys will move the cursor for
example. Then log into drive B and type PrROF512.S. Finally log onto
drive M:. You can now try out the editor and start writing your own

programs, using for example:

ME B:TEST.MOD

Page 8 ‘ FTL Modula-2 280 User Guidle

but we recommend reading the Language Reference Manual and the
sections on the Editor (Section §), Compiling and Linking (Section
4) and the library modules (Section 9} first.

3.1.3 Getting started on an
Amstrad PCW 8256

If you haven't expanded your machine’'s memory to 512k think
about it. It should cost you £30 or less, the compiler, linker, libraries
and editor will all load almost instantly and for all but the most
substantial projects (such as the Editor as supplied in the Editor
Toolkit) you shouldn't need to do any disk swapping. Upgrading
your RAM is probably more useful than buying a second disk drive
because of the faster response. If your Joyce is still under warranty
it is still worth upgrading the RAM as the machines are generally
very reliable and the time you save is probably worth the cost of a
maintenance contract.

If you have one disk drive and expanded memory:
1. First format both sides of three disks using DISCKIT and at least
one side of a further disk. Two of these disks will be backups of the

master disks, the third will be your Modula-2 system disk and the
fourth for storing your programs on.

2. Make sure you are logged into drive A and then for each side of the
master disks type

WP A: M: -Q

and this will copy all of the files onto the ramdisk.

Insert the relevant side of your backup disks and type:

M:WP M: A: -Q

This will copy all the files onto your backup.

Now type WD M:

and then when prompted type A for all. This removes all the files

from the ramdisk so that you have plenty of room for the next side.
Repeat this process for all four sides.

280 User Guide FTL Modula-2 Page 9

3. Now copy both sides of the compiler and linker disk to the
ramdisk using wp A: M: -Q and copy the definition module
compiler from the utilities side of disk 2 to the ramdisk using wp
A:MD.COM M: -Q. and log onto drive M:.

4. Run the SETSEARC utility. Answer the questions as follows:

Enter compiler search list :af

Enter device to receive .SYM files :£
Enter loader search list :a@

Enter device to receive .COM files :8
Do you want to list source :N

Do you want to change disks :N

User input is underlined.

5. Now insert your new Modula-2 system disk into the drive and
type:

WP M: A:

you will then be prompted to copy the various files on the disk. Type
Y to the following and N to the rest:

SD.COM WD.COM WP.COM M2.COM ERRMSG.DAT SYMFILES.LBR
M20VL.OVR ME.COM CONTROL.DAT and ML.COM

6. Now turn your work disk over and copy MODULAZ . LBR and MD.COM
in a similar manner. .

7. Now copy LIST.MOD from M: to your new programs disk.

8. Check that everything is ok; reboot the system and insert Side 1
of your Modula-2 system disk and type

WP A: M: -Q
Log on to drive M:; turn the disk over and type
WP A: M: -Q again.

Now take out your Modula-2 system disk and insert you programs
disk. Type

M2 A:LIST.MOD

Page 10 FIL Modula-2 280 User Guide

This will compile the list program.
9. Now type

ML A:LIST

and this will create the file L1ST.CcoM on drive M:
10. You can run this by typing

LIST A:LIST.MOD CON:/O

and this will list the program on the console.

When writing your programs, keep them on the programs disk in
drive A and, after loading CP/M, copy all the files from your Modula-
2 system disk as described above. It is a good idea to use SETKEYS
KEYS.WP as the editor uses many of the same keys as WordStar; so
the cursor keys will move the cursor for example. You can now try
out the editor and start writing your own programs, using for
example:

ME A:TEST.MOD

but we recommend reading at least the Language Reference Manual
and the sections on the Editor (Section §), Compiling and Linking
(Section 4) and the library modules (Section 9) first.

if you have only 256k and one disk drive:

1. First format both sides of three disks using DISCKIT and at least
one side of a further disk. Two of these disks will be backups of the
master disks, the third will be your Modula-2 system disk and the
fourth for storing your programs on.

2. Making sure ymi are logged into drive A and then for each side of
the master disks type

WP A: M: -Q

and this will copy most of the files onto the ramdisk. The ones that
it has not will be followed by Disc I/0 Error. Don't worry; this just
means that the ramdisk is full. Make a note of the files that haven't
been copied. Make sure that wp.com and WD.CoM have been copied
successfully. If they haven't delete another file and copy it using

280 User Guidle FIL Moduia-2 Page 11

WP A:WP.COM M: -Q OF
WP A:WD.COM M: -Q respectively.

Now log onto drive M: , insert the relevant side of your backup disks
and type:

WP M: A: -Q
This will copy all the files that you have transferred so far. Now type
WD M:

and then, when prompted, type Y to every file except wp.coM and
WP .coM. This deletes nearly all the files on drive M so there is plenty
of room for the rest of the disk.

Now type
WP A: M:

and type N to the files that you have already copied and v to those
that you haven't. Next transfer them to your backup as before and
repeat this for all four sides.

We recommend working with your source and .REL files on ramdisk
and the Modula-2 system in the disk drive. You should be careful to
back up your source programs to real disk. Unfortunately there is
not enough room on your ramdisk to hold the whole system; this is
why we recommend that you upgrade to 512k.

3. Now make another copy both of sides of the compiler and linker
disk this will be your Modula-2 system disk.

4. Delete SETTERM.COM, TERMINAL.DAT and the README . NOW file from
side 1 (the compiler side) of your new Modula-2 System Disk.

5. Copy MD.coM from the Utilities side of disk 2 on to drive M: and
from there on to side 1 (the compiler side} of your new Modula-2
System disk

6. Run the SETSEARC utility from A:. Answer the questions as follows:

Enter compiler search list :ma

Do you really have a drive m ? y
Enter device to receive .SYM files :m
Enter loader search list :ma

Enter device to receive .COM files :m

Paoge 12 FiL Modula-2 280 User Guide

Do you want to list source :N
Do you want to change disks :N

User input is underlined.

7 Delete SETSEARC.coM from this side of the disk as it is no longer
required.

8. Now turn your Modula-2 system disk over and run SETSEARC
again and answer the questions as before.

8. Delete SETSEARC.COM as it is no longer required.

9. Now copy LIST.MOD from the source side of disk 2 to drive M: and
from there onto your new programs disk.

10. Put the compiler side of your work disk in the drive A , type

M2 M:LIST.MOD

This has compiled the list program.

11. NW turn over the compiler/linker disk in the drive and type

ML M:LIST

and this will create the file LIST.coM on drive M:

12. You can run this by typing

M:LIST M:LIST.MOD CON:/O

and this will list the program on the console.

When writing your programs keep them on the programs disk and

turn the disk in the drive over when you switch from compiling to
linking.

3.1.4 Getting started on an
Amstrad CPC 6128

A RAM disk is a worth while investment. For about £80 you will get
the advantage of almost instant loading of the compiler, linker and
libraries.

280 User Guide FIL Modula-2 Page 13

1. Use DISCKIT3 to copy both sides of both disks; these are your
backup disks.

2. Now make another copy of both sides of the compiler and linker
disk. This will be your drive A work disk with the main Modula-2

system on it.

3. Format another disk using DISCKIT3. This will be the disk you
store your programs on.

4. Put the compiler side of your work disk in drive A and run
SETTERM. Enter the number for the Amstrad CPC (19 at the time of'
writing). Then answer N when asked if you wish to test it and then 0
to exit to CP/M.

5. Delete SETTERM.COM, TERMINAL.DAT and the README . NOW file from
side 1 (the compiler side} . :

6. Copy MD.coM from the utilities side of Disk 2 to the compiler side
of your work disk.

7. Run the SETSEARC utility. Answer the questions as follows:

Enter compiler search list :bha

Enter device to receive .SYM files :h
Enter loader search list :ba

Enter device to receive .COM files :b
Do you want to list source :N

Do you want to change disks :N

User input is underlined.
8. Delete SETSEARC.COM as it is no longer required.

9. Now turn your work disk over and run SETSEARC again and
answer the questions as before. .

10. Delete SETSEARC.COM as it is no longer required

11. Now copy LIST.MoD from the compiler side of your Modula 2
system disk to your new programs disk.

12. Put the compiler side of your work disk in drive A and your
programs disk in drive B and whilst logged into drive A type

M2 B:LIST.MOD
Page 14 FIL Modula-2 Z80 User Guide

This has compiled the list program.
13. Now turn over the compiler/linker disk in drive A and type

ML B:LIST

This will create the file LIST.CoM on drive B:
14. You can run this by typing

B:LIST B:LIST.MOD CON:/0

and this will list the program on the console.

When writing your programs keep your programs on the disk in
drive B and turn the disk in drive A over when you switch from

compiling to linking.
If you have a CPC 6128 with only the in-built disk drive:

Buy a disk drive! Although it is possible to compile very small
programs with only one disk drive, it is not possible to compile and
link a program that uses a large number of the library modules
(such as the LIST.MOD example program) without changing disks
about 50 times.

3.2 Getting Started Quickly on
a non-Amstrad Machine

Before you do anything else, make copies of the distribution disks
(put write disable tabs on them if they haven't already got them).
Then, put the distribution disks in a safe place and work from the
coples. You should never use the distribution disks for anything but
making copies.

The system will usually come on two disks. We assume in this
section that you are creating a two disk system. If you are really
short of space, the fuller notes in the next subsection should be
consulted.

Format two disks. If you have a choice of disk capacities, use the
highest capacities available. Put a copy of your operating system on
one disk and label this disk bisk A - Modula-2 System Disk. Label

* the other Disk B - Modula-2 Work Disk.

280 User Guide FTL Modula-2 Page 15

Because of the large amount of data and programs on the disks and
the small size of some formats, you will find that some of your
programs have been placed in libraries and possibly squeezed so
that we can fit everything onto the master disks. The following
instructions will tell you how to get these files out of the libraries.

The files you absolutely must have in order to have a usable system
are as follows:

9

1)

i#)

The compilers and the linker. These are called M2 .COM, MD.COM
and ML.COM. You also need the file M20VL.OVR which contains
overlays for the linker and the compiler. Normally, all these
files will be on your a disk but the overlay file can be put on
your B disk instead.

The file ERRMSG.DAT should be copied to your A disk. This disk
file contains the error messages used by the compiler in a
compressed form. If you have small disks, leave this step for
last!

The editor. Select one of the supplied editors. ME.COM is the
normal editor. It may be a memory mapped editor if you have
a system for which we have a memory mapped editor.
MEDUMB.COM is a version of the editor for users of terminal
with inadequate escape sequences for controlling the screen.
The next point deals more fully with the selection of editors.

You can use the compiler and the linker without the editor,
just as you would use a normal stand-alone compiler, but
that is making life difficult for yourself.

Put the editor on the A disk.

The next step is to create the file CONTROL.DAT on your A disk.
To do this, copy the file TERMINAL.DAT and the program
SETTERM. COM to your A disk and run the program.

This step is not needed if you are using a memory mapped
version of the editor, such as is supplied with the Osborme O1
or Microbee versions of the system. In this case, the program
ME . coM will be already set up for your machine.

Page

16 FIL Modula-2 280 User Guide

The SETTERM program allows you to select a terminal type
from a number of predefined terminal types. It also allows
you to define a new terminal type. If you need to do that, you
need to read the next section of the manual.

For now, we will assume that your terminal is on the list and
that you can select it just by typing its number. You can test
the definition if you like. To exit, just enter return when
asked to select a terminal type for the second time.

You can also configure the editor to use your arrow and
function keys. These are configured while using the editor,
rather than being set up in a separate program and are
covered in the section on the editor.

You can now delete the SETTERM.COM program and the
TERMINAL.DAT file.

Some terminals are unable to perform some of the
operations Delete Line , Insert Line or Delete to End of Line.
These are noted in the configuration as dumb terminals. If
your terminal is one of these, you will have to use the dumb
editor MEDUMB.COM. Delete the normal editor and rename
MEDUMB. COM to ME . COM.

v) Now copy the file MODULA2. LBR to your B disk. (Actually, as we
shall see in a moment, it can be placed on either disk}. This
file contains the relocatable binaries for all the standard
modules supplied with the system.

V) Finally, copy the file SYMFILES. LER to either drive.

If the library files are too big to fit on any one disk, you can
extract the files using the provided library utility (MLu) and
spread the extracted files across disks. SETSEARC can then be
used to make the compiler search those disks for files.

vi) By default, the compiler assumes that you have two disk
drives called A and B. Whenever it needs a file, it will search
drive A first and then drive B for the file.

If you have a system with more or less than two drives, or a
system on which the drives are not called a and B, or if you
want to search B first, you will need to run the SETSEARC
program. See the next section for details of SETSEARC.

280 User Guide FTL Modula-2 Page 17

If you have a large disk, such as a hard disk, or a RAM disk,
you may be able to fit all the files from disks A and B onto that
large disk. In this case, use SETSEARC to set all the search lists
to be @, which represents the current disk.

Note that the linker (ML) always searches all the disks in the
search list for a file. When you receive your system, many of
the standard files are contained in a library file
{MopuLA2.LBR}. This library is not searched until the entire
disk search list has been scanned. For this reason, keep your
linker search list as short as possible.

vii) Finally, depending upon the amount of space you have left,
you may wish to place some of the sources for the standard
modules on your disks. The definition modules are in the
library DEFFILES.LBR. The implementation modules are in
MODFILES.LBR while the assembly language modules, are in
ASMFILES.LBR with the opcodes file for the assembler.

3.3 Compiling and Running
Your First Program

You should now be ready to compile and link a program. The
program HITHERE iS a suitable candidate since it is very short.

To compile, link and execute HITHERE, copy the file HITHERE . MOD from
the distribution media to your B disk. Then do the following:

M2 b:HITHERE.MOD
ML B:HITHERE/D
HITHERE

This should simply print Hi there on your terminal.

If you have purchased the Editor/Toolkit, another good test for the
compiler is to recompile and link the editor. If you can do this, you
have little to worry about.

Page 18 FIL Modula-2 280 User Guide

Some of the editor modules import a lot of other modules. If you are
short of memory, modules which import lots of other modules will
give trouble, since the symbol table for each definition module must
be loaded. Even though definition modules are compacted to take
the minimum possible space, the symbol table file for a large
definition module takes up a significant portion of the symbol table

space.
If you have only small disks, you will need to set up a special disk for
re-compiling the editor with just the editor sources on it and you

may have to alter the file RECMPED. SUB to allow you to change disks
during the compilation.

3.4 SETSEARC in Detail

The program SETSEARC.COM patches MD.cOM, M2.coM and ML.coM for
your system. With SETSEARC, you can do the following:

)] Change the search list for .sym files. This includes searches
for the SYMFILES . LBR library file as well. By default, .sywm files
are looked for on the B drive followed by the A drive. (The
defaults are the settings in the compiler when it arrives and
before you run SETSEARC)

The .syM files are symbol table files. They are output by the
definition module compiler. They contain the details of all
symbols defined in the definition module. These files are read
by the compilers whenever the corresponding file is
imported.

ii) Change the search list for .REL files searched for by the
linker. By default, the linker looks on drive B and then drive A.

The .REL files are the relocatable files produced by the
compilers. These files are read by the linker to produce an
executable program. The linker will automatically search for
and lnk in any .REL files it requires as the result of an
import until all modules which have been imported by any
module have been loaded.

i) Change the disk onto which . syM files are written by MD.COM.
By default, they are written to the logged in disk. It is best if
this disk is the same as the first disk in the list given for .syM
files.

280 User Guide FIL Modula-2 Page 19

i)

v)

vi)

Change the default disk to receive .cou files produced by the
linker. By default, they are written to the logged in disk.

Turn the listing off. By default, all text compiled is listed to
the terminal. Tuming listing off makes the compiler run
faster. As you cannot change the listing option when you call
the compiler from the editor, turning the listing off is
recommended.

Enable the change disks option. If this is selected (it is
deselected by default), and the linker has not found a
module, it will prompt you to change the disk and continue.

This is useful if you have insufficient space for all your .REL
files on a single disk. If you do have enough space, don't use it
- it gives you one more thing to worry about when you are
missing a module.

The search lists are lists of disk drive identifiers, such as A, B, C etc.
In addition, the character @ can be used to denote the currently
logged in disk (that is, the logged in disk when the compiler is run -
not when SETSEARC is run).

You should enter the list in the order in which the disks are to be
searched. Note that the compiler will run fastest if the file is always
on the first disk searched. .

Run the program after you have copied the files to your work disk.
The files patched are Mp.coM, M2.coM and ML.coM but all three do not
have to be present - the program will patch those it can find.

The program will prompt for the required information. For example:

SETSEARC

Enter compiler search list :bc@

Enter device to receive .SYM files :@
Enter loader search list :bc@

Enter device to receive .COM files :a
Do you want to list source :N

Do you want to change disks :N
Patching MD.COM

Patching M2.COM

Patching ML.COM

Done

Page 20 FIL Modula-2 — 280 User Guide

If you use a hard disk or a large RAM disk, then it is probably best to
set all the search lists to be just @, and then to always. log on to the
RAM disk before using the system.

If you enter a drive designator other than a, B or @, the program will
ask you to confirm that you have a drive with that designation with
the question Do you really have a drive x?. Enter yes to accept
the designator or no to re-enter the search list.

3.5 SETTERM in Detail

When you receive the system, you will probably have to set it up for
your particular console. To do this, copy the files TERMINAL.DAT and
SETTERM.COM to your system disk, then run the program SETTERM.

This will not be necessary if you have received a memory mapped
version of the editor. If this is the case, you will not need a
CONTROL.DAT file on the logged in disk and the editor should work

straight away.

When you load SETTERM, you will be presented with a list of
terminals which have been pre-defined for use with the editor. If
yours is on the list, select it and exit from SETTERM by pressing
return when you are asked to select a terminal type for a second
time. It is up to you whether you choose to test the installed
terminal type. It is easiest to ignore that possibility for the moment
until you have tried the editor.

If you directory your logged in disk, you will now see a file called
CONTROL.DAT there. This file contains the control codes used by your
terminal for various functions.

If you cannot find your terminal on the terminal list, first see if you
can find an equivalent terminal. If you can find one which is at least
close, you can edit that definition to produce a new definition for
your terminal.

As well as using the terminal definition file with the editor, you can
use it with your own programs, through the module screenIo,
which is supplied with the compiler, but the source to the
implementation module is part of the Editor/Toolkit. For this
reason, it is a good idea to complete as much of the table as you can.

The editor, however, only uses a few of the functions in the terminal
configuration file. These are as follows:

280 User Guide FIL Moduia-2 Page 21

Delete Line Graphic Boxes

Insert Line Clear Screen
Delete to EOL Cursor Position (Go to x,y)
Bold Half Intensity

You can manage without some of these: Half intensity is only
required for cosmetic purposes. You can replace bold by some other
means of highlighting (underline is a good choice). The graphic
boxes are used around menus and can be managed without, though
with some detraction from the aesthetics of use of the editor.

Unfortunately, some terminals cannot even do these. If your
terminal cannot perform any of the first three functions {delete line,
insert line and delete to end of line), you can use the dumb editor
(MEDUMB . coM). This editor tends to be slow, since scrolling operations
require the whole screen to be rewritten. Another possibility, if you
have bought the Editor/Toolkit, is to create a memory mapped
version of the editor. To create a memory mapped version of the
editor, modify the module SCREENIO.MBE for your computer and re-
compile the editor, substituting SCREENIO.MBE for SCREENIO.MOD in
the file RECMPED. SUB.

Providing that your video memory map is in the normal memory
used by CP/M, and is not in another bank, it should only be
necessary to change a few constants in SCREENIO.MBE to produce a
memory mapped version for your computer.

Once SETTERM has been used, you can delete both it and the file
TERMINAL.DAT from your work disks. If you have created a new
terminal definition, save the TERMINAL.DAT file before deleting it as
the new definition is saved to this file as well as being output to the
CONTROL.DAT file.

On some terminals, when a character is written into the last
column of a line, the screen scrolls. This means that the edit text
gets displayed with blank lines in between lines of text. This can be
particularly troublesome with the dumb editor, because it fills the
rest of a partially full line with blanks to simulate erase to end of line.
If this is a problem, or if your terminal scrolls up a line when you
write to the last line of the screen, reduce your screen width by one.

3.6 The Files on the
Distribution Disk

Page 22 Fil Moduia-2 780 User Guide

Because of the lack of space on the disks and the large amount of
data we send you - including the source code to all of the standard
modules - you may find that the files on your disks have been
squeezed and or packed into libraries. If this is the case, you will
receive a separate sheet of instructions showing how to unpack and
unsqueeze the flles.

There are several types of file on the disks.
1 The files with the extensions .coM

M2.COM The [implementation] module compiler
MD.COM The definition module compiler
ML.COM The linker

ME .COM The editor

MEDUMB . COM The editor for dumb terminals
ASM.COM The assembler.

SETTERM.COM The terminal configuration program
SETSEARC .COM The search list set up program

MLU.COM The library file editor

M20VL.OVR The overlay file for the compilers and linker.
WP .COM

WD .COM The HiSoft 1k Utilities

SD.COM

1) The files with extension .sYM

These are the symbol definition files for the definition
modules. One is produced whenever a definition module is
compiled. They must be present whenever you compile a
program which imports modules. They need not be on the A
drive: the compiler will search for them. The SETSEARC
program allows you to change the list of disks that the
compliler will search for .syM files.

280 User Guide FIL Modula-2 Page 23

These files are in the library SYMFILES.LER. There is no need
to extract them from this library as the compiler can use
them directly from the library.

i) The files with extension .REL

These are the relocatable binaries for the supplied source
files. They can be on any disk. A .REL file is created or
extended whenever a module is compiled. The linker links
.REL files to produce an executable program.

These files are not in the same format as Microsoft .REL files.
iv) The files with extensions .MoOD, .DEF and .ASM

These are the definition and implementation modules for the
supplied modules. Note that there is no source for SYSTEM or
for LOADER. These are not really modules. SYSTEM.REL is in
fact the run time support for the compiler; it is only slightly
related to the definition file represented by sYSTEM.syM. It is
quite impossible to regenerate sYSTEM. sYM with a Modula-2
program.

These files are not needed unless you want to recompile or
modify a supplied module. On the other hand, it is
convenient to keep the .DEF files on your working disks so
that you can refer to them from within the editor when
writing another module.

The .MoD files are in the library file MODFILES.LBR. The .DEF
files are in the library file DEFFILES.LBR. The .asM files are in
the library file ASMFILES.LBR.

v) The .DAT flles. These are some data files used by the system.

CONTROL.DAT is the terminal definition file for your machine.
It may not be present on the distribution disk since it is
created by SETTERM.

TERMINAL.DAT is the file of available terminal definitions. If
you add a new one, we would be most pleased to receive a copy
of it. If you receive a memory mapped version of the editor,
this file may not be present. Once you have selected the
terminal driver you wish to use, this file (and the program
SETTERM.COM) can be deleted from your work disk.

Page 24 FIL Modula-2 280 User Guide

EDITSTAT.DAT ought not be present on your distribution
disk. It will be created by the editor the first time you use it on
any disk (it is always created on the logged in disk). It keeps a
list of the names of all files edited and the position in the file
so that when the editor is reloaded, you are placed back
where you left off.

MACROS.DAT will also be created by the editor the first time
you use it. It is used to store the definitions of macros and

special keys.

ERRMSG.DAT contains the error messages for the compiler. It
must be on the logged in disk when you run a compile.
Usually, it will be on the same disk as the compiler.

OPSASM.DAT is a file of opcodes read in by the assembler. It
must be on the logged in disk when the assembler is run, so
it is normally kept on the same disk as the assembler.

vi) The Library Files

MODULA2.LBR is an LU file of relocatable modules for the
standard modules. The files in this library are all .REL files.
The linker can link directly out of this file, but will link a file
that stands alone on the disk in preference to a file of the
same name in the library. This avoids having to update
MODULA2 . LBR every time you recompile a file that is contained
therein.

Similarly, the standard .syM files have been placed in a
library called SYMFILES . LBR. Once again, the compiler will use
a free-standing .syM file in preference to one that is in the

library.
There will probably be several other library files on the
master disks.
MODFILES.LBR contains the sources for the supplied
modules.
DEFFILES.LBR contains the sources for the definition
modules.
ASMFILES.LBR contains both the sources for the modules
that are written in assembler.

Z80 User Guide FIL Moduia-2 Page 25

Provided that you have at least 180k on each of two disk drives, you
will be able to use the compiler successfully. You will not have a lot of
space available on the A drive but your B drive should have about 50k
available. Make sure that you delete SETSEARC.COM, SETTERM. COM,
MEMCHECK.COM and TERMINAL.DAT so as to make available the
maximum amount of space.

You can put the .REL and .sywu files, or the library files containing
them; MODULAZ.LBR and SYMFILES.LBR respectively, on any disk
that is convenient. It is best to keep all files with a given extension on
a single disk, so that you can use SETSEARC to set the compilers to
look at that disk first. Otherwise, time will be wasted in an extra disk
directory search.

If your disks are smaller than 180k, you are going to have to
organize things a little. It is best to keep the two compilers (M2 and
MD) on a disk with the editor if possible. With the attendant .DAT
files, this requires around 118k. You will probably also be able to add
the linker (ML) to give you a total of 156k, which leaves you enough
room for your favourite utilities.

The assembler, which is only used occasionally, and the auxiliary
programs can be kept on another disk.

If you have a single drive system, you should still be able to use the
product provided that the drive is at least 400k. In this case, you will
probably want to set up one disk for editing and compiling and a
second disk for the linker and your .REL files.

Note that you never need any of the source files on line while using
the compiler: all the information required to compile and link
modules is contained in the .syM and .REL files. However, having the
.DEF files on line is very nice if you have the space, as you can then
bring up a definition module in a window of the editor when you
need to see how to call a particular routine. :

We do not recommend attempting to run the compiler if your disks
are less than 180k, which is the capacity you get on single sided,
forty track double density.

If you have 100k disks, then it is most certainly long past time for
an upgrade.

Please note that the next page is page 29!

Page 26 FIL Modula-2 280 User Guide

4 Compiling and Linking

This section describes the use of the compiler and linker.

These programs can be used as stand-alone programs, just as
would be done with a conventional compiler. In addition, however,
you can call the compiler from inside the editor and you can return
to the editor either at the end of the compilation or when an error is
detected. In the latter case, the editor will position to the place of the
€rror.

There are a large number of compiler and linker flags. None of these

are required for successful compilation. The most important flags
are the /D flag in the linker and the /R flag in the compiler.

4.1 Compiling Programs

You can compile programs either through the editor or in stand-
alone mode. This section describes the stand-alone mode. To
compile from within the editor, type ~0 (Control and 0) while editing
and the rest should be fairly obvious. See the section on the editor
for a full description.

To compile an implementation module, or a module without a
definition module, use the M2 command:

M2 b:MyMod.MOD
You must give the extension of the file to be compiled.

If you want to call the relocatable something different (this is not
normally advised), give the required file name as a second

eter. You can also redirect the relocatable to a different disk
by giving the drive designator for the required disk:

M2 b:MyMod.MOD YourMod.REL
M2 b:MyMod.MOD a:

By default, the relocatable is placed on the same disk as the source
(even if you give a file name but no drive designatorl).

280 User Guide FTL Modula-2 Page 29

To compile a definition module, use the command M.

MD b:MyMod.DEF

The second parameter can be used in the same way as in M2. It still
affects the .REL file, not the .syM file.

Whenever you recomplile a definition module, you must recompile
the implementation module as well. However, you may recompile the
implementation module as often as you like without recompiling the
definition module. The reason for this difference is that the .ReL file
for the implementation part is a appended to the definition part.
Whenever the implementation part is re-compiled, the previously
appended information is overwritten. Recompiling the definition
module causes the .REL code for the implementation part to be lost.

Also, if you recompile a definition module, any module which
imports the recompiled module must be recompiled as well. This is
because the .syM file contains linkage information which is copied
by modules which import the module, and recompiling the
definition module may change the linkage information.

When you compile the implementation module, the .REL file
produced by the definition module compilation must be on the disk
to which you are writing the .REL file for the implementation part,
since the code is appended to that file. Several flags can be used on a
compilation:

/s This flag causes the compiler to use short (256 byte) buffers
instead of the normal 1024 byte buffers. As a result, you can
compile larger modules at the expense of compilation speed.

/L Toggle listing of the source file on the terminal. You can also
turn listing on and off in the file itself with (*sL+*) and
(*$L-+*). The initial value can be set with the SETSEARC
program.

/T This flag causes extra information to be output to the .REL
file to allow tracing of program execution, and to allow the
printing by the linker of individual procedure load addresses.
See the loader flags for more details.

/P This flag is similar to the /T flag, except that only the
procedure trace information is output. The statement trace
information is suppressed. This results in smaller executable
files while still retaining some trace information.

Poge N FiL Modula-2 280 User Guide

/E This flag is used by the editor to inform the compiler to load
the editor at the end of the compilation. This flag is not
normally used directly.

/R This flag enables range checking. The compiler will detect,
usually at run time but sometimes when the code is
compiled, assignments to subranges of values which are not
in range. It will also detect arithmetic overflows and subscript
range errors.

/U This flag does the same thing as the /R flag except that extra
checking is included. This increases the size of the code but
will pick up out-of-range errors caused by the value being

assigned not being a valid value for its type.
For example:

TYPE Colour=(Red, Green,Blue);
VAR c¢:Colour;

BEGIN

c:=Colour(4);

This error will not be picked up with the /R flag because the left hand
side and the right hand side are both of type Colour. The /R flag
assumes that if the value being assigned is of a type which cannot
cause a range error then no range error can occur. The /U flag does
not make this assumption. The /u flag will catch some errors,
typically caused by undefined variables, that the /R flag will not
catch.

You should give any flags at the end of the command line, after any
file names. For example:

M2 b:editcont.mod/s

280 User Guide FTL Moduia-2 Page 31

4.1.1 Pseudo-Comments

Some of the flags that can be used on the command line can also be
used as pseudo-comments in the text of the file being compiled. The
flags are enclose in comments and are introduced with a $ - for
example (*$L+*). Note that the flag consists of the $ character
followed by the character for the flag and then either a + or a - to
enable or disable the option respectively.

There must be no spaces in this sequence. You can include spaces
(or spaces followed by a comment) after the + or -. The flags that can
be used in this way are L, T, R, U and P.

In addition, there is an A pseudo-comment. This pseudo-comment

is described in the reference manual (Section 3.3 of the reference
manual). -

4.2 Linking Programs

To run the linker, use the command ML followed by the name of the
main module for the program.

ML b:MyMod
ML b:MyMod/d

This simple form of the linker command is all you need to perform
most links. The second form (using the D flag), separates the data
from the code and so produces a smaller .cowm file. For this reason,
using this flag is recommended.

The .com file produced by the link will be output to the disk selected
with SETSEARC. The default output disk is the currently logged in.
disk. Any modules that must be loaded to complete the link will be
loaded automatically. This is a big advantage over most C compilers,
and those Pascal compilers which support separate compilation,
since those compilers require you to specify every module that is to
be loaded, or to keep your modules in a library.

Page 32 FiL Modula-2 250 User Guide

Linker commands can be entered on the command line or they can
be entered after receiving an asterisk (*) prompt from the linker.
This facility should only rarely be required. For example, you may
need it if you are using CORG in an assembly language module and
you want to pack as much code as possible below the CORG address
to avoid wasting space. The CORG pseudo is described in the section
on the assembler.

You can also use the long form of the command to load up modules
which would otherwise not be included in a link. Doing this would
not make sense in any other programming language, but it is
possible to have any number of main programs in Modula-2. For
example:

ML b:LowbData,b:MyMod
This command would explicitly place LowData first in memory.

If a command is too long to fit on a single line, it may be terminated
by a comma. The linker will then ask for another line of commands,
prompting you with an asterisk. The comma must be a comma that
would occur normally in the command if it had not been split across
lines. This comma convention can be used on the command line as
well as in response to an asterisk.

The complete form of the command is:

ML com file name =rel file,rel file,..
For example:

ML test=b:me,b:newstorage

If the com file name Is omitted, it defaults to the name of the first
.REL file (with the extension changed to .com).

The .REL files are loaded in the order given. Any modules imported
by the modules named in the linker command are not loaded until
after all the named modules have been loaded.

The order of the module names in the command line will not affect
the order of execution of the main program parts (see Section 4.2.2).
There is no way to change the order of execution of main program
parts.

280 User Guide FIL Modula-2 Page 33

In other linkers, the relocatable files contain entry points, each of
which has an explicit name. This means that other linkers allow you
to replace a module by another module with a different file name but
with the same entry point names. This is not possible in Modula-2.
The entry points are simply numbers. If you want to replace a
module with another module, you must rename the .REL files.

On the other hand, this means that you never have the problem,
which is common with other languages, of finding several entry
points in different modules all have the same name.

Once all the explicitly named modules have been loaded, the linker
searches for any other modules which have been imported by any
loaded module. This process continues until all imported modules
have been loaded or diagnosed as missing. Only the .REL file needs
‘0 be available to the linker; the .syM files, and the source files are not
1sed.

The .REL files for required modules may either be on one of the disks
in the search list set up with SETSEARC or they may be in a Hbrary
called MODULA2 . LBR. If a .REL file exists as a separate file on one of the
disks and it is in the library file as well, the free standing version will
be loaded. This avoids the problem of having to update your library
every time you change a module.

The libraries are created with the utility MLU.

The name used to import a file is used as the file name for its .REL
file, so you must ensure that these names match. For this reason,
you should always make the file name of any module the same as
the module name.

For example, if you had a module called FRED:

IMPLEMENTATION MODULE FRED;

It should be kept on a file called FRED.MoD. The .REL file must be
called FRED . REL, or it will not be found by the linker.

Of course, because of CP/M's naming conventions, only the first
eight characters are significant and the name must be converted to
upper case. The loader and the compilers always convert to upper
case before searching for a .REL or a .sYM file. You can use upper or
lower case in the module header and in import statements.

Page 34 FIL Moduia-2 ~280 User Guide

For example, if you import the module storage, then the linker will
look for the file STORAGE .REL. Conversions becomes CONVERSI.REL.

Recall that the SETSEARC program can be used to alter the list of
disks to be searched for a .REL file.

4.2.1 Magic Numbers

When you compile a definiion module, the compiler generates a
magic number which is stored in both the .syM file and the .REL file.
Each module which imports the given module records this magic
number in #ts own .REL flle. if you now recompile the first definition
module, the magic number will be generated a second time and,
unless you are unlucky (fess than one chance in 256), the number
gvlﬂl no longer match the magic number recorded in the importing
es.

When you link with the files in this state, the linker will report that
the first module has been recompiled since the modules which
import it. This message is a warning message only, but you ignore it
at your peril: the linkages to the re-compiled module from those
which import it may be incorrect, and may not even be made at all!

This is only a problem if you recompile the definition module. You
can recompile the implementation module as often as you like.

To overcome the preoblem, recompile the modules which import the
original module. If it is imported by an implementation module, you
need only recompile the implementation module. If it is imported by
a definition module, you will have to recompile both the definition
module and its associated implementation module and you will also
have to recompile any modules which import this module in turn.

H this sounds arduous, it's probably because it is! To keep life
simple, we have provided a program Preceden which will generate a
table of module dependencies from a set of modules, and an
associated program BuildSub which will generate a submit file to
recompile all the modules required to be recompiled after
recompilation of a given module, using the tables generated by
Preceden.

You will have to compile and link Preceden and BuildSub before you
can use them. They are described later in this manual.

280 User Guide FL Modula-2 Poge 35

Occasionally, you may get the recompiled since message even
after recompiling all the importing modules. This occurs if the
version of the .sym file does not match the version of the .REL file for

the original file.

4.2.2 Order of Execution of
Main Program Parts

In Modula-2, every module can have a main program part. This
differs from most other languages which only permit one main
program part in any executable file.

The order in which these main program parts are executed can be
important. The main program part may set up initial values for
variables in the module. If a procedure in the module were called
before the main program part had been executed, it could be
accessing undefined variables.

For example, the main program part of the module Storage sets up
a pointer to the start of the heap. If NEw were called before the main
program part of Storage, then the pointer returned could point
anywhere at all.

To make sure this does not happen, if a module imports a second
module, the main program part of the second module {if any) will be
executed before the main program part of the first module.

So, for example, if TreeBuilder imports storage, then the main
program part of Storage Is executed before the main program part
of TreeBuilder. -

If a cycle exists {for example, a imports b which imports ¢ which
imports a), one of the modules is selected arbitrarily, and a
diagnostic is printed to tell you which one it was. This diagnostic will
be printed even if only one of the modules in the cycle has a main

program part.

Page 38 FIL Modula-2 250 User Guide

4.3 Linker Output

Whenever you perform a link, the linker outputs some information
to your terminal.

For each module, the name of the module and the address at which
it starts are printed. If the /R linker flag is selected (see below), each
module is followed by a list of procedures in the module, with their
addresses. All addresses are in hexadecimal.

If you get messages such as bad code in file, they refer to the
most recently listed module.

After all modules have been loaded, the linker links together the
main program parts. You will be given a list of module names in the
order that their main program parts will be executed. With each
module name is the address of the start of the main program part.

During the linking of the main program parts, you may get the
message Circular references. This means that two or more
modules import each other (For example, module a imports module
b which imports module ¢ which imports module a, thus forming a
loop). In this case, the linker picks one of the modules at random
and displays a message saying which one has been selected.

You may also see a message e recompiled since d This means that d
imports e and the definition module of e has been recompiled since
d was compiled. You should recompile d and re-link. If the definition
modules of d imports e, then you must recompile both the definition
module and the implementation module for d. If the import is in the
implementation module only, then you need only recompile the
implementation module.

At the end of the linker listing is a set of four numbers. These are:
Data Size Bytes of uninitialized data in the program.

Code Size Bytes of code in program.

Data in Code Bytes of initialized data (embedded in code).

Top Address Top address used. Address for start of heap.

280 User Guide FTL Modula-2 Page 37

4.4

Linker Options

There are several flags you can use with the linker. If you use a flag,
it must be given after the first file name in the command, or, at the
latest, after the first .REL file. For example:

ML Fred/d, George
ML George=Fred/d,George
ML George/d=Fred, George

But not:

ML Fred, George/d

If more than one flag is used, each flag should have its own /:

ML Fred/D/R

The flags are:

/D

This is the most frequently used flag. Normally, (without the
flag), the linker mixes up your data and executable code. This
results in a .cou file which is larger than it need be, but it
does ensure that all your variables have initial values (zeros
in fact), which can avoid rude surprises when you run a
program you thought was working in a new context.

Entering just /D causes the static data to be allocated
downwards from the top of memory, starting just beneath
your operating system. This option is very convenient when
you are developing a program and you do not know how large
the program will be. However, you should not use it for
programs you are going to send to others, because if their
transient program area is smaller than yours, your program
will overwrite their operating systeml

Also, if you use a debugger, it will usually relocate itself to the
top of memory, which is just where your data is. As a result,
your program will overwrite your debugger.

Under CP/M Plus you will also have the same problems if you
try to run your program from within a susMIT file, because
suBMIT loads an RSX at the top of memory.

38 FIL Modula-2 280 User Guide

To overcome this problem, use the /D:xxxx option. Here, xxxx
is a hexadecimal value for the address from which (and
working upwards) the data is to be loaded.

When you link with the /b option (without the :xxxx), the
linker will tell you the last address used. This is the last
address used by the code. Make a note of this address and
use it as (xxxx) when you relink the program for distribution.
It is a good idea to leave a little space for expansion of the code
so that when you make some changes to the program, you
will not have to recalculate the address for xxxx.

To summarize:;

No /D Flag - Code and data mixed together, .couM file rather
larger than required. Very safe.

/D Flag - Data in high memory. Stack starts immediately |
below data. Data is allocated from the top of memory down.
Not good for debugging. :

/D:xxxx - Data is allocated upwards from the given address.
The stack starts from the top of memory. The heap starts
from the end of the data and works up.

This flag only affects static data (that is, data allocated at the
module level). Dynamic data; data allocated in procedures, or
in modules nested inside procedures, is always allocated on
the stack. :

The compiler has an extension which allows you to give initial
values to variables. These variables are always part of the
.cou file. They are never affected by the /D flag. Also, of

course, variables which use the absolute address construct
are not moved by the /D flag.

For example:

ML b:me/d

The data will be just below the top of the TPA.

ML b:me/d:8000

The data works up from 8000 hex, towards FFFF hex,

. 180 User Guide FTL Modula-2 Page 39

/F

/L

Full FOR loop control. Normally, for a FOR without a BY clause,
or with a BY constant of plus or minus one, the compiler
generates fast code using DEC and INC instructions. If you
have For loops which contain more than 32767 iterations
total (for example, FOR i:=0 TO 60000 DO ,whereiis a
CARDINAL), you should specify this flag. It will produce slower
code, but the large FOR loops will work correctly. If you use
large FOR loops and fail to use this flag, the loop will only give
one iteration.

This is a prelink option. With this option, you can produce a
file from a group of modules which is basically the same as a
.coM file except that not all the required modules have been
loaded. The output file contains enough tables to allow the
linking of other modules later. If you are writing a large
program which uses many modules (either your own or
standard modules), you can prelink all the modules you are
not currently working on. This will reduce the time taken for
a link, since the linker just needs to copy the prelinked
modules, instead of having to go through the process of
linking them a second time.

The file produced by a link with this option has the extension
.REL. You can only use one prelinked module in any link,
since the code produced cannot be relocated. It must also be
the first module mentioned. For example, suppose that your
main module Test imports the modules Terminal and
SmallI0 and you want to prelink these modules. Enter the

command: .

ML misc/l=terminal,smallio

This will produce a prelinked file containing these modules,
plus any modules that are imported by them. (If you want to
omit a module that is imported by one of the linked modules,
you will have to temporarily change its name so that the
linker will not find it (don't forget to change the MODULA2.LBR
file either)). The files that are explicitly prelinked may not be
in the library.

Page 40 FiL Moduia-2 ~280 User Guide

When you want to link to produce an executable program,
Just type: '

ML test=misc,test

In this example, we are assuming that you keep your .REL
files on disk B, and that you want the executable file to be
TEST.coM rather than M1SC.COM.

Do not use the /D flag or any of the ROM-able code flags when
linking using a pre-linked module. Rather, you specify the
desired flag values when you create the pre-linked code file.

/0 The omit checking code flag. If you have compiled a module
with either the /R or the /u flag, the linked code will normally
contain range checking code. This flag causes the executable
file to be created without any checking code.

/P The separate displays option.

The linker normally allocates one display for the entire
program. A display is an area of memory which is used to
access variables which are local to procedures between the
current procedure and the global level. For example, if you
have a procedure nested inside another procedure:

PROCEDURE Outer;
VAR b:BOOLEAN;
PROCEDURE Inner;

Then, when a reference to variable b is made from within
iInner, the display is consulted to determine where in
memory b is. .

If you are running a program which uses multiple processes,
and you only have one display, then the display may be
altered while a process is inactive. For example, if the
procedure Inner contained a transfer to another process,
then by the time b was re-started, the display could have
changed, and the access to b would access some other part of
memory, more or less at random.

This flag gives you one display per module. This allows you to
have a process per module (which is a common
arrangement) without having to worry about the display.

280 User Guide FTL Modula-2 Page 41

4.4.1 Options for Debugging

There are two options which assist with debugging. If you wish to
use them, you must use the /T option when you compile the
modules which are to be debugged. The linker will accept a mixture of
modules compiled with and without the /T compiler option, so you
can restrict debugging output to the modules you are interested in.

The linker flags are:

/T

/R

Generate trace code. If you use the simple form of this flag
(/T), the linker generates an RST 6 instruction at the
beginning of each procedure and at the beginning of each
statement. You can change the number of the RST
instruction used by using the form /T:n, where n is the
number of the interrupt to use. Normally, you should
restrict yourself to using 6 or 7. If you use a debugger, it will
use one of these. You should then use the other one for
tracing. Hence, if your debugger uses RST 6 to trap
instructions, you should use the flag /T:7. Unfortunately
some machines, such as the Amstrad range, use RST 7 for
interrupts so there is only one spare restart.

The module DEBUG of the release system can be used as a
trace routine. You may want to modify this module for your
own purposes. The source of the module contains all the
details of how it works. You must import Debug into any
module that is to be traced, to ensure that the main program
part of Debug is executed first.

If you do change the interrupt used for tracing, for example,
by using /T:7, you need to change the constant IntNumber in
the DEBUG module.

List addresses of procedures. For modules compiled with
trace mode on, using either the /T or the /p compiler flag, the
names of the procedures in the module and their addresses
in memory, will be displayed.

4.4.2

Options for ROM-able . Code

The linker contains three options to support the production of
ROM-able code. These flags allow you to position the code, the stack,
and to set a HALT jump address other than zero.

/3 xxxx

/C: XXXX

/S xxxx

The address given by xxxx is the address to jump to at
the end of the program, or when a call is made to the
procedure HALT. By default, this address is zero. The
primary reason for this flag is to support the
generation of programs which run stand-alone, rather
than under CP/M.

Code starts at the given address, rather than at 100h.
This flag can be used to position code which will be
burnt into ROM. For example, if the ROM starts at
address 1000H, you could use the flag as:

ML b:MyProg/c:1000

Note that programs that have been linked with a base
of other than 100h cannot be run as CP/M programs.
That is, if M1000 has been linked with the command

ML M1000/c:1000

then attempting to run M1000 from the A> prompt in
CP/M will not work. If you do attempt to run them as
commands from CP/M, they will be loaded at 1004 but
all the addresses in the file will be set as if the code was
loaded at the address given by the flag.

Stack start address. By default, the stack starts from
the bottom of the operating system, which is the top
(high address) end of your TPA. This is found (when
the linked program is run), by picking up the value at
address 6. This flag allows you to set the start address
for the stack. The stack will work downwards from this
address. The address given (the xxxx) is not part of the
stack.

280 User Guide

FIL Modula-2 Page 43

Il Moduia-2

280 User Guide

5

The Editor

The editor is loaded in one of three ways:

1}

i)

i)

5.1

You can load the editor explicitly, use the command ME. The
ggmm:gd may be followed by the names of up to three files to
edited.

ME MyMod.MOD MyMod.DEF

If no file names are given the program comes up with the
menu described in the next section.

When an error is detected during a compilation, the compiler
will give you the message Space to continue, i to ignore
and continue, e to edit. Typing e will cause the editor to
be loaded with the file that was being compiled as the edit file.
The cursor will be positioned to the point of the first error
and the error message will appear on the last line of your
screen. To see subsequent errors see Section 5.3.

If a program is compiled with the /E option, the editor will be

loaded at the completion of a (successful) compilation. This is
how the editor gets control back after calling the compiler.

The Main Edit Menu

The editor contains a menu from which you can select filing and
compiling options. If you start the editor without giving any file
names, this menu is displayed.

You can invoke the menu at any time by typing Control O (~0) (o for
options). The menu looks like this:

Open File Comp/Exit
Save File Quit File
Close File Quit Window
Split File Exit Edit
Compile Reset Disk

280 User Guide FTL Modula-2 Page 45

You can use the cursor keys (~x, s, ~D and ~E} to select an option.
Alternatively, typing the first letter of an option selects the option. If
there is more than one option that starts with the given letter,
typirig the letter selects the next one. Hence, to select Split File
you have to type s twice.

Typing Escape (the key marked Esc, or else Control and opening
square bracket (() if your keyboard lacks the Esc key), will abandon
option selection and retum to editing. Typing return will cause the
currently selected option to be executed.

The menu options are:

open file

save file

close file

split file

compile
comp/exit
quit file

quit window

exit

reset disks

open a file for editing. A new window is created
with the file in it. You can have at most three
windows.

save a file. The file is not closed so you can
continue editing it.

save a file and finish editing that file,

split a file between two windows so that separate
parts of the file can be viewed and edited together.

compile a program.

compile and then return to CP/M.

abandon a file.

abandon the current window. If this is the only
window in which a file is visible, the file is
abandoned as well.

exit the editor, saving altered files.

make all disks read/write. This is very useful if
you are using CP/M 2.2 and cannot save an

edited file because a disk is full. Simply change
the disk, reset the disks and then save the file

FTL Modula-2 Z50 User Guide

The editor allows you to have up to three files open simultaneously,
although with three windows open, the windews become
unpleasantly small. (there is no way to adjust the sizes of the
windows)

The save file, compile, comp/exit, split file, quit window and

quit file commands always reference the file in the current
window. When compile or comp/exit is selected, the editor will call
either M2, or MD depending upon the extension of the file being edited.
The extension must be either .MOD or .DEF; otherwise, using either of
these options is equivalent to a save file.

The assembler is not integrated with the editor. You can only run

the editor from the CP/M command line, and you cannot get into
the editor from the assembler when an error occurs.

5.2 Basic Editing Commands

The editor is a full screen editor with a command set based on
WordStar™ but with a couple of ideas taken from Emacs, an editor
developed by Richard Stallman, namely, the repeat command
facility and the macro facility. These latter two facilities make the
editor very powerful indeed.

While the command structure of WordStar has been often abused
(and probably as equally often praised), it has the advantage of
being familiar to a large number of people, especially micro-
computer users.

The current version of the editor is limited to editing files that will fit
into memory. Producing a virtual version of the editor should not be
difficult, as all the required changes should be restricted to the
module MakeEdit from the Editor/Toolkit.

In any case, if you don't like the command structure, you can
always change it, as the sources of the editor are available. The key
assignments can be found in the module Keyboard. (This is a lovely
excuse to have, as it can cover all conceivable problems.)

If your terminal has arrow keys or function keys which transmit
more than one character (for example, left arrow might transmit
the characters <EscC> (A) to the computer, you can define the arrow
and function keys to be commands for use by the editor. How to do
this is described in the section on creating macros.

280 User Gukie FTL Modula-2 Page 47

In the following descriptions, the caret (%) is used to denote that the
control key should be depressed in combination with the character

following.

As many of the commands are the same as for WordStar, it is
appropriate to start with a list of the differences.

] The ~KX, “ks and KD commands which, under WordStar,
save the file and exit, save the file and continue editing and
close the file respectively, are replaced by ~0 followed by the
appropriate menu option.

i) The key ~B is used to change windows.

i) In find commands, lower case matches either upper or lower
case. Upper case only matches upper case.

The basic commands which are implemented are:

The cursor control commands:

~S move one character left (~# does likewise)
~D move one character right

~E move one line up

~X move on character down

Note how these kéys form a diamond on the left hand side of the
keyboard.

The first two of these can be combined with ~Q to produce the
following:

~Q"S move to left of screen
~Q°D move to end of current line
When you position past the right hand side of the screen, the

screen will be scrolled horizontally. This allows you to edit lines
which are longer than the width of your screen.

Page 48 L Moduia-2 280 User Guide

The forward/backwards by a word commands:

“A move backwards by a word

~F move forward by a word

In this editor, a word is a sequence of alphanumerics, or a sequence
of non-alphanumerics. Hence, these commands work better than
they do in WordStar.

The delete commands:

~G deletes the character under the cursor
AT deletes the next symbol (word)

Y deletes the current line

DEL deletes the preceding character

Some of these can be combined with ~Q.

~Q"Y deletes from the cursor to the end of line
~Q"G turns off the ringing of the bell if you strike a key
which has no function.

The screen scroll commands:

AC moves forward by one window.
“R moves back by one window.

By one window, we mean that the cursor moves up or down the file
by a number of lines equal to the number of lines in the window.
Hence, if you have a normal 24 line screen and only one window, a
move of about 22 lines is made. If you have three windows, a move of
only 7 lines is made. :

~Z scrolls up one line

W scrolls down one line

~“Q"R returns to the beginning of file
~Q~C goes to the end of the file

280 User Guidie FTL. Moduia-2 Page 49

The insert mode change command:

'

toggles the insert mode. At the beginning of an editor
session, you are in insert mode. This means that any
printing character you enter will be inserted into the
current file, and the character the cursor was
positioned to will move up one place. If you toggle into
overwrite mode, when you enter a printing character,
the character under the cursor is replace.

The search and replace commands:

AQAF

I\QI\A

“L

causes a search for a new string. The string is’
remembered for use with ~L. To search backwards,
precede the command with <Esc>-1. This is described
further later, in the discussion of command repetition.

causes a search for a string, followed by replacement of
the string when found.

causes a search for the next string, as previously set
by ~0~F or ~0~A. If the preceding command was ~Q"a,
then the requested substitution is repeated. The
<ESC>-1 construct can be used with ~L as well.,

In the search commands, lower case characters entered as part of
the search string will match either upper or lower case characters in
the text. Upper case characters will only match upper case
characters in the text.

Other commands:

~0

brings up the options display, as described in an
earlier section.

splits the current line at the cursor position but, unlike ‘

~N
carriage return, does not move the cursor to the
following line.

~B Changes to the next window.

Page FIL Modula-2 Z80 User Guide

53 Block Moves and Labels

~K followed by a numeric digit (O to 9) sets a label at the cursor. At
present, there is no visible indication of the presence of the label. To
return to the position of the label from another point in the file, type
~Q followed by the digit.

Labels are associated with files not windows. Hence, if you split a file
across two windows, a label defined in one window can be gone to in
the other window as well. However, you cannot goto a label in
another file. That is, the ~Q digit command can never change
windows.

There are two special labels: B and K. Type ~KB to define the beginning
of a block of text. Use ~kk to define the end of the block. You can now
use several commands which reference the block:

KV moves the block to the current cursor location.
~KC copies the block to the current cursor location.
~KY deletes the block.

You can use the ~kv and “"KC commands to move text between
windows. To do this, define the block of text, use ~B to go to the
destination window, position the cursor to the desired position for
the block. Enter ~k followed by enough ~Bs to get back to the window
which contains the block to be moved. Now type v or C.

Note that, when doing a between window block move or copy, you
use B to position to the window from which the block is coming.
This means that you cannot use ~k~B to define the start of a block.
You must release the control key before typing the B. If you find this
annoying, you can change the window change character. ~p is, we
think, the only key on the keyboard that does not currently have a
command attached.

These commands can be used in place of the “KR and “KW commands
of WordStar, which read a file into the current edit flle, and write the
select block to a file, respectively. In fact, because you can select the
text to be copied in from a file, and because you can join several block
together in a file, the commands are rather more powerful than
those of WordStar.

280 User Guide FTL Modula-2 Page 51

There are also a set of labels that can be set up when you have errors
when compiling. If you use the 'space’ option to continue compiling
then the compiler remembers the position of the error. If you want
to ignore a particular error press i and it won't be added to the table.

You can keep up to ten error messages this way.

When you enter the editor the first error message is displayed and
the cursor positioned accordingly. You can then use the following
commands to get to other errors.

~QEn where n is the number of the error takes you to the nth error.
The first one is ~QE0 and the last ~QE9 (if you saved 10 errors)

~QEN goes to the next error
~QEP goes to the previous error
~QEC goes to the current error

Note that the error positions can become inaccurate if you change
your source; if this happens just recompile.

5.4 Command Repetition

All commands can be repeated by entering escape followed by the
number of times the command is to be repeated and the command
to perform. For example, <EsCc>10~G deletes ten characters,
<ESC>70* enters 70 asterisks. :

Hence, to alter 10 occurrences of a string to another string, use the
~Qa command to alter the first occurrence, and then use <Esc>9"L
to alter the others. Or, if you are confident, you can precede the ~0a
by <ESC>10.

The character ~J (line feed) can be used instead of escape. You may
also need to use it if you define your function keys for use with the
editor, and they transmit sequences like <ESC>4 since then entering
<ESC>4 explicitly would have exactly the same effect as hitting the
function key.

The find commands: ~0A, ~QF and ~L allow the use of a negative
count to denote a backwards search. These are the only commands
which recognize a negative count. All other commands treat a
negative count as if it were a positive count with the same absolute
value. Once you have set the direction of the search, the direction
remains fixed until you enter another count, so you can search
through a file backwards by typing Esc -1~QF and then using ~L for
the following searches.

5.5 Macros

The editor allows the definition and use of simple keystroke macros.
You can define a macro in two ways:

1 Explicit definition.

Enter <gsc>D. A window will pop up saying character to define:.
Enter the alphabetic character to associate with the macro.

The window will change to Macro:. Enter the text of the macro,
terminated by carriage return. You may use any characters in the
macro except the characters used to edit a command line: *s, *H, "X,
DEL and carriage return. If you want to enter these characters, you
will have to use learn mode.

i) Learn mode.

Enter <esc>~1L. You will be asked for the character to be defined. The
editor then returns to normal editing. Perform the edit sequence
that you want the editor to learn, then type <Esc>~L a second time.
There is a limit of 60 characters on the length of the definition.

To invoke a macro, enter <EsC>x where x is the alphabetic character
that you have defined. For most characters, you can also type
<ESC>"x, but this cannot be used with b, L or P, since these have
other uses.

To list the current macro definitions, enter <Esc>~P.

280 User Guide FTL Modula-2 Page 53

5.6 Key Definitions

To define an arrow key or a function key which transmits a multiple
character sequence, proceed as if you were defining a macro, using
either learn mode or command mode. However, when the prompt
Enter character to define: appears, type the escape key. the
prompt will change to Enter key to define. Now press the key
you want to define, followed by carriage return. You can now
as%late a macro with the key just as if this were a normal macro
definition.

The macro definitions are saved on the file MACROS.DAT between
edits.

5.7 The Position File

The editor maintains a file EDITSTAT.DAT on the logged in disk,
which will usually be the disk containing the editor. This file gives
the position of the cursor when a file is saved. A separate entry is
kept for each file name. Quitting from a file does not change the
position entry for that file.

This file allows the editor to re-enter any file at the position at which
it was saved. If you delete EDITSTAT.DAT, or a new file is edited for the
first time, the editor will position to the beginning of the file. Once
you get used to this facility, you will never want to return to an
editor which always positions at the beginning of the file.

5.8 Stopping Macros

During the execution of a repeated command, or of a macro, you can
stop the execution by typing ~u. In addition, typing Esc will continue
the execution of the macro or repeated command, but will stop the
screen being updated after each change. This speeds up the
execution.

6 The Library Manager

The library manager is called MLU. This module provides the most
useful facilities found in a utility like the public domain utility LU
plus a few facilities to make it easier to manage your libraries.

To use the library manager, simply enter the command MLU without
any parameters. You will now be prompted for the name of the
library that you want to manage. Enter the full name of the library
including the extension. For example, MODULA2 . LBR.

If you want to create a new library, enter the name of the new
library. MLU will first confirm that you want to create the file and will
then ask How many slots?. The number of slots is the maximum
number of files that can be placed in the library. A typical answer
would be 32. The value is always rounded to a multiple of four.

There are now a number of commands that you can use.

A Add a file to the library. If the file already exists in the library,
the old copy is deleted. Follow the command letter by the full
name of the file to be added. For example

A INOUT.REL.

D Delete a file from the library. Follow the p by the name of the
file. For example

D INOUT.REL.

E Extract a file from the library. Write a copy of the file to the
logged in disk. The file is not deleted from the library. Follow
the command letter by the full name of the file to be
extracted. For example

E INOUT.REL.

F Close the library file and exit. You should always exit with
this command rather than ~C as if you use ~C, the index will

not be updated.

L List the names of the files in the library. Each file name is
listed together with the length of the file in bytes.

280 User Guide FTL Modula-2 Page 55

6.1

Reorganize the library. The existing file is made into a .BAK
file, for example MODULA2 . LBR becomes MODULA2 . BAK, and all
the files are copied into a new library with the same name as
the old library (e.g. MODULA2 . LBR). When files are deleted from
a library, the space that was used by the file is not recovered.
Reorganizing the library produces a new copy without the

wasted space.)

You can also use the reorganize command to change the
number of slots in the library.

Update the library. The command is followed by a list of disk

drives to be scanned. For example U aB. The given drives are

scanned for any files with the same name as any files in the

library. These files are then copied into the library. This gives

Jéi)u a quick way of updating a library with newly compiled
es.

Compiling Library Files

The compiler cannot directly update files that are in a library. Hence,
if you want to recompile an implementation module for a module
that has been placed in a library, you must first extract the .ReL file
from the library, re-compile and then put the file back into the
library. Here is a typical example:

MLU

Name of library to update:MODULA2.LBR
Command: E INOUT.REL

Command: F

M2 INOUT.MOD

Compilation Complete

MLU

Name of library to update:MODULA2.LBR
Command: A INOUT.REL

Command: R

How many slots? 32

Command: F

.73 FiL Modula-2 280 User Guide

7 Assembling Programs

When we first introduced FTL Modula-2, we did not expect that
anybody would have much use for an assembler. It seems, however,
that assembler is like Rock 'm Roll - it will never die. We have
therefore expanded these notes as well as improving the assembler.

The assembler uses Z80 mnemonics as defined in ‘An Introduction
to Microcomputers Volume II (Some Real Products)’ by Adam
Osborne. These are shown in the following table. Most of the
standard mnemonics are available. Many instructions which access
the accumulator (2) can be written with or without the accumulator
- for example, either ADD A, H or ApD H. The only exceptions to the
usual mnemonics are:

1 IN A, (N) must be written as IN A, N.
OUT (N),A must be written as OUT N,A.

EX AF, AF must be written as EX AF.

B WN

RST instructions must be written RST 0 through RST 7, not
RST 0 through RST 38h.

Each line consists of a label field, an opcode field, an operand field,
and a comment field. All fields are optional. There may be several
labels on a line.

A label must either be followed by a colon, or must start in the first
two column positions in a line. It may do both.

For example:

; this line contains just a comment
loop: 1d a, (hl) ;this is a comment

nop
cp a,o
jc nz,end
inc hl

jp loop

280 User Guide FTL Modula-2 Page 57

The field following the last label is the opcode (1d in the example
above). It must start after the first two character positions (or it
may be preceded by a single tab character). If the opcode fleld is
omitted, the operand field must also be omitted.

An assembly language statement cannot span a line break.

Identifiers may be in either upper or lower case. They are always
converted to upper case.

The operands, if any, follow the opcode. individual operands are
separated by commas.

The comment field may start anywhere on a line. It is preceded by a
semi-colon (;). The remainder of the line is then treated as a
comment. :

To run the assembler, use the command asM.
ASM b:CPM.ASM b:CPM.REL

Both parameters must be given in full. The file OPSASM.DAT must be
on the logged in disk, otherwise the assembler will hang.

The assembler always produces a listing file on the console during
pass 2 unless the LIsTS pseudo is used. It is possible for the
assembler to loop if an operand is particularly badly formed. The
LI15T1 pseudo can be used to list the source on pass one so that the
offending line can be found. '

An assembly language module takes the place of an implementation
module. To interface to other modules, written in assembler or in
Modula-2, you must write a definition module. The definition
module looks exactly like the definition module for a module written
in Modula-2.

By default, an assembly language implementation module
completely overwrites the .REL file created by the definition module,
whereas a normal implementation module appends to the definition
module .ReL flle. The MODULE pseudo, described below, allows you to
append to the definition module compiler's .REL file,

The interface to an assembly language routine is insecure because
the assembler has no way of checking that you have in fact
implemented the procedures that you have declared in the
definition module.

Poge 58 FIL Modula-2 230 User Guide

To export procedures, you define them in the definition module in
the usual way and use the LABEL pseudo to define them in the
assembly language module. If you do not use the MODULE pseudo, the
definitions must be in the same order in each module, since the
assembler assigns label values in the order the label pseudos are
encountered; there is no attempt to match a label fleld with a name
from the definition module.

If you are using the MODULE pseudo, then the LABEL pseudo takes as
parameter the name of the procedure being defined:

label reboot ;reboot procedure

7.1 Expressions

Expressions are used in the operand field of statements. Each
opcode will have one or two expressions. The expressions on a single
line are separated by commas. The assembler accepts all the usual -
expression syntax., ~

The registers are:

AF BC DE HL IX IY

(these are two bytes each)

ABCDEHL

(these are one byte each. B, D and H are the top halves of BC, DE and HL
respectively. ¢, £ and L are the bottom halves.

Expression may contain the usual relational and boolean operators:

=,<,<=,<>, 5, >=,EQ, LT, LE, LQ, GT, GE, GQ, NE, NOT, AND, OR, XOR

and the operators:

HIGH Value is high byte value

LOW Value is low byte value

SHL Shift the left operand left by the number of bits in the
right operand.

SHR Shift the left operand right by the number of bits in the
right operand.

280 User Guide : FTL Modula-2 Page 59

Every expression must be of a form that is acceptable the the opcode
on the line. These forms are called addressing modes. Not every
instruction can accept all addressing modes. If you use an
addressing mode that is not acceptable, you will get the error
message Invalid Operands for Opcode. This should not be
confused with the error message Undefined Opcode which is given
when the Opcode itself is not recognized.

The use of parenthesis in expressions has a special meaning. They
dencte that the contents of the value of a label rather than the value
itself is to be used.
For example,

LD A,temp
loads A with the value temp.

LD A, (temp)

loads a with the contents of the address temp.

7.2 The Instructions

Here is a complete list of the machine instruction mnemonics
accepted by the assembler.

In the tables, the fdllowlng symbals are used:

ADDR A 16 bit address.

BIT . Avaluein therange O to 7.

DISP A value in the range -128 to 127.
DATA A 1 byte value,

PP Any of BC, DE, IY, SP

PR Any of BC, DE, HL, AF.

RP Any of BC, DE, HL, SP.

RR Any of BC, DE, 1Y, SP

REG Anyofa, B, C,D,E,H,L.

ADC
ADC
ADC

ADD
ADD
ADD
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
BIT
BIT
BIT
BIT
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CCF
cP (

(HL)
(IX+DISP)
(IY+DISP)
A, (HL)

A, (IX+DISP)
A, (IY+DISP)
A,DATA

A, REG

DATA

HL, RP

REG

(HL)
(IX+DISP)
(IY+DISP)
A, (HL)

A, (IX+DISP)
A, (IY+DISP)
A,DATA
A,REG

DATA

HL,RP
IX,PP
IY,RR

REG

(HL)
(IX+DISP)
(IY+DISP)
A, (HL)

A, (IX+DISP)
A, (IY+DISP)
A,DATA
A,REG

DATA
REG

BIT, (HL)
BIT, (IX+DISP)
BIT, (IY+DISP)
BIT, REG
ADDR

C, ADDR

M, ADDR

NC, ADDR
NZ, ADDR

P, ADDR

PE, ADDR
PO, ADDR

2z, ADDR

HL)

INC
INC
INC

LD
LD
LD
LD
LD
LD
LD
LD
LD
D
LD
LD
LD
LD
LD
LD

(IY+DISP)
IX

IY
REG

(HL)

(IX)

(1Y)

ADDR

C, ADDR

M, ADDR

NC, ADDR

NZ, ADDR

P, ADDR

PE, ADDR

PO, ADDR

2, ADDR
C,DISP

DISP

NC, DISP
NZ,DISP
Z,DISP
(ADDR) , A
(ADDR) , BC
(ADDR) , DE
(ADDR) , HL
(ADDR) , IX
(ADDR) , 1Y
(ADDR) , SP
(BC) ,A

(DE) ,A
(HL) , DATA
(HL) , REG
(IX+DISP),DATA
(IX+DISP),REG
(IY+DISP), DATA
(IY+DISP) , REG
A, (ADDR)

A, (BC)

A, (DE)

A, I

A, R

HL, (ADDR)

1,A

IX, (ADDR)

PUSH IX

PUSH 1Y

PUSH PR

RES BIT, (HL)

BIT, (IX+DISP)
BIT, (IY+DISP)
BIT, REG

c

M

N

NC
NZ
P

PE
PO
RET 2

RETI

RETN

RL (HL)

RL (IX+D1SP)

RL (IY+DISP)

RL REG

RLA

RLC (HL)

RLC (IX+DISP)
RLC (IY+DISP)
RLC REG

RLCA

RLD

RR (HL)

RR (IX+DISP)

RR (IY+DISP)

RR REG

RRA

RRC (HL)

RRC (IX+DISP)
RRC (IY+DISP)
RRC REG

RRCA

RRD
RST
SBC
SBC
SBC
SBC
SBC
SBC
SBC

BIT

(HL)
(IX+DISP)
(IY+DISP)
A, (HL)

A, (IX+DISP)
A, (1Y+DISP)
A,DATA

280 User Guide

FTL Modula-2

Page 61

CP (IX+DISP)
CP (IY+DISP)
CP A, (HL)

CP A, (IX+DISP)
CP A, (IY+DISP)
CP A,DATA

CP A,REG

CP DATA

CP REG

CPD
CPDR
CPI
CPIR
CPL
DAA
DEC (HL)

DEC (IX+DISP)
DEC (IY+DISP)
DEC IX

DEC 1Y

DEC REG

DEC RP

DI

DJNZ DISP

EI

EX (SP),HL
EX (SP),IX
EX (SP),IY
EX AF

EX DE,HL

EX HL, (SP)

EX IX, (SP)

EX IY, (SP)
EXX

HALT

M0

M1

M 2

IN A,DATA

IN REG, (C)
INC (HL)

INC (IX+DISP)

LD IX,ADDR
LD IY, (ADDR)
LD IY,ADDR
1D R,A

LD REG, (HL)
LD REG, (IX+DISP)
LD REG, (IY+DISP)
LD REG, DATA
LD REG,REG
LD RP, (ADDR)
LD RP,ADDR
LD SP,HL

LD SP,IX

LD SP,IY
LDD

LDDR

LDI

LDIR

NEG

NOP

OR (HL)

OR (IX+DISP)
OR (IY+DISP)
OR A, (HL)

OR A,REG

OR DATA

OR REG

OTDR

OTIR

OUT (C),REG
OUT DATA,A
OUTD

OUTD

OUTDR

OUTDR

OUTI

OUTI

OUTIR

OUTIR

POP IX

POP IY

POP PR

SBC

SuUB
SUB
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

A,DATA
A, REG
DATA
HL, RP
REG

BIT, (HL)
BIT, (IX+DISP)
BIT, (IY+DISP)
BIT, REG
(HL)
(IX+DISP)
(IY+DISP)
REG

(HL)
(IX+DISP)
(IY+DISP)
REG

(HL)
(IX+DISP)
(IY+DISP)
REG

(HL)
(IX+DISP)
(IY+DISP)
A, (HL)

A, (IX+DISP)
A, (IY+DISP)
A, DATA
A,REG

DATA

REG

(HL)
(IX+DISP)
(IY+DISP)
A, (HL)

A, (IX+DISP)
A, (IY+DISP)
A, DATA
A,REG

DATA

Notice that the assembler will accept many instructions with either
an implicit or explicit accumulator. For example a0D A, L or ADD L.
The original assembler only accepted the implicit form.

Page &2

“FIL Modula-2

7.3 The Pseudos

The assembler supports most of the common pseudos, except for
those associated with macros (e.g. MACRO, IRP, ECHO etc). The SET
pseudo is called Now to avoid confusion with the SET opcode.

The pseudos are:

CORG Conditional orG. The code must be loaded above the
address given in the operand fleld. Useful for machines
which use bank switching. Note that the linker will
never use any space which is left unused because of an
ORG Or a CORG to a higher address.

CSECT Returns to the code segment. You can have multiple
DSECTs and CSECTs. They will be joined together by the
assembler. :

DB Define bytes. The operand field contains one or more
: values to be placed in bytes. A character string may be
used as an operand.

DS Declare space. The operand field gives the number of
bytes required. The bytes are not initialized. (Actually,
at present they will all contain zero)

DSECT Defines the start of one or more bytes of uninitialized
data values. That is, you can only use DS statements in
a DSECT. Data allocated in a DSECT will be allocated with
the uninitialized data from the Modula-2 modules,
instead of being a part of the cou file. This allows you to
produce ROM-able assembly language modules.

DW Define words. The operand fleld contains one or more
values to be placed in words. Recall that on the Z80, a
word value is stored with the least significant byte
first. For example, if the operand is de, the order of the
bytes is ed. When used as part of a Dw statement, de is
an integer number, not a string. Strings can only be

used with the DB statement.
END Terminates the assembly module. Must be present.
EQU Gives the associated label the value of the expression in

the operand field. The label may not be re-defined.

280 User Guide FIL Modula-2 Page 63

IMPORT

LABEL

LIST1

LISTS

MAIN

MODULE

Import symbols from other modules The operand field
contains the name of the module being imported
identifier must be given for each imported identifier,
and the case must be correct. For example:

IMPORT Terminal,WriteString

However, inside the assembler, only the first eight
characters are kept and those are converted to upper
case. This is also true of the MODULE statement, which
means that, when you write the definition module, you
have to make sure that all the identiflers are unique in
their first eight characters after capitalization. Also,
make sure you do not use identifiers like BC because
these are already defined as registers.

You can import types, variables, constants and
procedures. When you import a type, what you get is a
constant with the size of variables of the type in bytes
as its value.

If all the symbols will not fit on a single (80 character)
line, end the line with a commma that would have been
required anyway and then continue on the next line.

Defines a procedure. The order must be the same as
the order of the definitions in the definition module.

Produce a listing on pass one.
List only lines containing errors.

Marks the start of an initialization part for the module.
This will be executed as a main program part. The code
must exit with a retum (ReT) instruction.

Defines the module for which this is an
implementation part. The operand fleld must contain
the name of the module. Only the first eight characters
count. If used, this pseudo must be the first statement
in the module.

FTL Modula-2 280 User Guide

When this pseudo is used, the code for the assembly

e part of the module is appended to the code for
the definition part, rather than overwriting it. Also, the
symbols defined in the definition part are imported as
if they had been imported with an IMPORT pseudo.

NOW Gives the associated label the value of the expression in
the operand field. The label may be given other values
with subsequent NOW statements.

ORG Set the origin counter. Care must be taken with this
instruction since it may cause the linker to overwrite
code already loaded (in which case a warning is given),
or it may cause a gap to be left in the code. Normally, it
should not be used.

Do not use the ORG statement to define labels which are
outside the transient program area. Use EQU instead. If
you do use ORG in this way, the link editor may behave

strangely, typically producing a huge (64k) cou file.

7.4 Parameter Passing
Conventions

Parameters are passed on the stack. There are two ways of passing
parameters; by value and by reference. By reference is used for VAR
parameters (as in PROCEDURE Thing (VAR i:INTEGER) ;).

For a value parameter, the variable is copied onto the stack. Single
byte values are pushed as two bytes, with the value being in the
lower byte. All other parameters require the same number of bytes
as there length; a five byte value uses five bytes from the stack.

For a reference parameter, only the address of the parameter is
pushed onto the stack. This always requires two bytes.

Open array parameters are handled differently. An open array

parameter always requires exactly three words (six bytes) of stack

space. The first word (highest in memory) contains the address of

the parameter, even for value parameters. The next word contains

the high bound for the array (as accessible with the HIGH function.

’(l)‘lfae final word (lowest in memory) contains the total size, in bytes,
the value.

280 User Guide L Modula-2 Page 65

Parameters are pushed onto the stack from left to right so the first
parameter in the procedure definition is in the highest position on
the stack.

If the procedure is a function, space for the returned result is
allocated on the stack before any of the parameters are pushed.

It is the called programs responsibility to remove the parameters
from the stack before returning. In addition, the called program
must save and restore the value of the 1x register. All other registers
may be altered.

7.5 Limitations

There are several limitations in the use of the assembler. Firstly, you
cannot add an offset to an imported symbol. This is because the
address of the imported symbol is really an entry number, so
adding an offset would change the entry number.

Secondly, it is possible to get Doubly defined identifier
messages when the assembler should be giving Phase Error
messages. This happens when the position of an instruction
changes between pass 1 and pass 2. This can be caused by
undefined labels in the code.

Thirdly, the assembler is unable to access .symM files from the
SYMFILES.LBR library. The .syu files must be stand-alone files.

Page 66 FIL Modula-2 280 User Guide

8 The Utility Programs

A number of general purpose and Modula-2 utility programs have
been included on the distribution disks for your convenience. The
HiSoft 1k utilities provide alternatives to some of the CP/M
programs and the Modula-2 utilities give further examples of the
use of Modula-2 and of the supplied modules. You will have to
complile the Modula-2 programs before using them.

8.1 The LIST Program

On your distribution media, you will find a program L1ST which can
be used to list out files. It will list ordinary ASCII or WordStar files
and will accept a wild card parameter giving the names of the files to
list. For example:

LIST b:*.DOC

When you first install the system, it is worthwhile to list out all the
supplied definition modules for future reference. Compile and link
m program and run it. The required statements look something

M2 b:LIST.MOD
ML b:LIST
LIST b:*.DEF

You may need to use a different drive designator, or change disks
between statements. You may need to modify the list program for
your printer. Some printers will not print tabs. Other printers are
even more weird. For example, we have one customer with a printer
which does not do a form feed until a carriage return is received, and
then it prints the line and then does the form feed! He had to add a
carriage return after every form feed. We resisted making the L1sT
program all singing and all dancing since it would have ended up
being too complicated for you to hack. As it is, hacking LIsT is a
useful introduction to the language.

If, when you compile and link this and the following modules, they
produce .coM files which seem very large, you may be forgetting to
use the /D flag on the link edit. Forgetting this flag will cause the
data to be allocated as part of the .cou file. See the section on linker
flags for details of the /D flag.

280 User Guide FIL Modula-2 Page 67

8.2 The Precedence Programs

On your distribution disks, you will also find two programs in
source which simplify the re-compilation of dependent modules
when you recompile a definition module.

The first of these programs, Preceden, scans all the files given as
parameters to build a table of dependencies. Compile and link this
program, then run it as follows:

Preceden b:*.def b:*.mod

The parameters are the (wild card) names of files to be scanned.

The program creates a file called Preceden . dat will be created with a
copy of the table. The table will also be output to your terminal (so
you can use Control P on the command line to have it printed to
your printer as well).

The second program is BuildSub. To run this program, use the
command:

BuildSub Temp.sub namel name2..{flag

Temp.sub is the name of a submit file to be created. The file will
contain commands to recompile the various modules which import
any of the modules in the list of names. You can then use submit or
supersub to execute the command file.

A flag may be used with the BuildSub command: If you terminate
the command line with [I, the modules given in the list will be
included in the submit file.

For example:
BuildSub temp.sub Files Terminal [i

The BuildSub program expects to find the file PRECEDEN.DAT on the
logged in disk. The file temp.sub can then be executed with the
standard CP/M program submit.

Page &8 FIL Moduia-2 — 280 User Guide

8.3 The HiSoft 1k Utilities

We have provided some useful (and smalll) file utilities to make file
management and conversion more straightforward.

8.3.1 WP

WP .COM copies files from one disc to another. It is invoked by typing
its name followed by its parameters at the CP/M prompt. The
general form of the command line is

wp <source afn> <destination afn> [-q] [-b]

The items specified as <source afn> and <destination afn> above
are standard CP/M ambiguous file specifications, with optionally a
drive name at the front. An ambiguous file specification is a filename
which can match more than one file; this is done using wildcards,
which are described in great detail in your CP/M documentation. wp
extends the definition slightly in line with CP/M's built-in DIR
command, such that a drive name alone (such as B:) is equivalent to
_ on the specified drive. If this item is left out altogether, it is taken
as *.* on the current (default) drive.

The items specified by [-q) and ([-b] are an optional and will be
described later.

Typical wp invocations, then, would be

wp a: m: [RETURN]

which copies all files on drive A onto drive M,

wp m: (RETURN])

which copies all files on the default drive to drive M and

wp b:*.com a:*.bak [RETURN]

which copbs all files on drive B with an extension of .CoM to drive A

with an extension of .BaK. If the source and destination files are the
same, then wp prints an error message and returns to CP/M.

280 User Guide FIL Modula-2 Page 69

When a valid command line has been typed, WP collects the names of
the matching files and displays each one in turn, followed by a
prompt:

Copy (Y/N/A/Q/P/B/W)?

You may type Y to copy this file, B to copy the file making a backup
(any existing destination file is renamed to have extension .BaK), W
to copy the file without a backup, N not to copy this file, p to go back
to the previous selection, A to copy this and all subsequent
matching files or Q to quit now without copying this or subsequent
files.

If -0 is present as the last item on the command line, wp does not
prompt and copies each matching file without asking.

If -B is present as the final item on the command line then Y and A
will automatically make backups and to copy without a backup you
must use W.

83.2 WD

wD.coM deletes files from a disc. It is invoked by typing its name
followed by its parameters at the CP/M prompt. The general form of
the command line is

wd <afn>

The item specified as <afn> above is a standard CP/M ambiguous file
specification, with optionally a drive name at the front. An
ambiguous file specification is a filename which can match more
than one file; this is done using wildcards, which are described in
great detail in your CP/M documentation. Wb extends the definition
slightly in line with CP/M's built-in DIR command, such that a drive
name alone {such as B:) is equivalent to *.* on the specified drive. If
this item is left out altogether, it is taken as *.* on the current
{default) drive.

Page 70 FiL Modula-2 250 User Guide

Typical WD invocations, then, would be

wd a: [(RETURN]

which deletes all files on drive A and

wd b:*.com [RETURN]

which deletes all files on drive B with an extension of .com.

When a valid command line has been typed, wp collects the names of
the matching files and displays each one in turn, followed by a
prompt:

Delete (Y/N/A/Q)?

You may type Y to delete this file, N not to delete this file, A to delete
this and all subsequent matching files or 0 to quit now without
deleting this or subsequent files. .

833 3D

SD.COM is a utility to display a detailed directory listing and the disc
free space. It takes exactly the same parameter types as CP/M's
built-in DIR command: an ambiguous file specification, a drive name
or no parameter at all. The files matching the given specification are
listed on the screen along with their vital statistics. These include
the length in CP/M records (128-byte units) and the size of the file
rounded up to the nearest 1k boundary. If a file it set to Read-Only,
an R is printed by its name; if a file is set to System, an s appears.
Both can appear together for the same file.

The final part of the display is the number of bytes free on the disc,
in 1k units.

280 User Guide FIL Modula-2 Page 71

Z80 User Guide

9 The Standard Modules

In this section, we shall attempt to tell you enough about the
standard modules to allow you to write programs. The ultimate
definition of the standard modules can be found in the definition
files supplied with the compiler. Occasionally, additions are made to
these modules, so you should read the definition modules to
determine the current status of each module.

If you have the disk space, it is useful to keep the definition modules
for the standard modules on your work disk so that you can display
them in a window when you are unsure of the use of any procedure.

The use of modules instead of inbuilt facilities is both Modula- 2's
great strength and its great weakness.

It is its great weakness because there is not yet a standard for what
modules should be present. In this implementation, we have chosen
to follow the guide given by Niklaus Wirth in his book 'Programming
in Modula-2'.

It is Modula-2's great strength because, providing that you receive
the sources of the modules, as is the case with our compiler, you can
at worst take your modules with you when you port a program to
another machine. We are quite happy for you to do this when you
port programs you have written using FTL Modula-2, though we
ask that you do not distribute those modules without our
permission except to other purchasers of FTL Modula-2.

This means that you can never be held hostage to a particular
implementation of Modula-2. Although the greatest source of
variation between implementations of Modula-2 is in the Input-
Output modules, Input-Output is the greatest area of variation in
compilers for other languages too (COBOL is a prime example of
this, as anyone who has ever ported a large COBOL system will be
glad to confirm). At least in Modula-2, it's under your control.

Also, if the supplied modules do not quite meet your requirements,
you can always alter them to suit. If you do this, however, call the
module by a new name. This will avoid confusion when you share
your programs with other users.

780 User Guide FTL Modula-2 Page 73

9.1 The Standard Modules are
Ordinary Modules (Almost)

You may change and re-compile almost any of the standard
modules. The only modules which you must not recompile are the
sYSTEM module, since the .syM file for this module cannot be
generated using a Modula-2 definition module, and the LOADER
module, since this module is a dummy module used by Storage to
mark the top of the load module (you can, of course use LOADER
yourself, it is not special to storage).

Some of the modules provided are a standard part of Modula-2.
Some off these, such as SYSTEM and Files, are low level modules
which provide a clean interface to the underlying operating system.

Because these modules are related to the operating system, they
are not totally portable. However, the definitions in this compiler are
sufficiently close to the original PDP-11 definitions that you should
find little trouble in converting from that compiler to this. If you are
using both machines, get the M23 compiler for the PDP-11, since it
contains the latest changes to the language.

In fact, the filing system of RT-11 on the PDP-11 is more primitive
than that of CP/M. As a result, the low level modules in this compiler
are more powerful than the original low level modules of the PDP-11.

The higher level modules, such as Streams and InOut are relatively
machine independent.

We have noted any deviations of the modules from those presented
in Wirth's book in the source code.

Page 74 FIL Modula-2 — 280 User Guide

9.2 A Quick Tour

Here is a quick guide to the standard modules, by function:

input-Output
The module Terminal supports terminal input-output.
ScreenlIO can be used to draw structured screens.The
Modula-2 source to this module is part of the Editor
Toolkit. The Terminal module treats the terminal as a

teletype.

The module Files can be used to read and write disk
files. If directly implements the BDOS functions of
CP/M, so that you must write whole sectors. It
provides routines to open, close, create, delete, rename,
read and write files.

The module Streams is a layer on top of Files which
supports Input-Output of characters and records,
rather than fixed length sectors.

Formatted Input-Output
The modules Inout and Small10 provide input-output
for formatted information. For example, these routines
allow you to write integers as text, rather than in their
internal representation. InOut uses Streams to do the
actual input-output. Small10 uses the Terminal
module for this.

There is a module RealInOut which performs
formatted input-output of real numbers.

String Manipulation '
The strings module provides facilities to manipulate

standard (zero byte terminated) Modula-2 strings.

Heap Management
Heap management is used to allocate or deallocate

space when you do a NEW or a DISPOSE. This is provided
by the module Storage.

Command Line Handling
The Command module allows you to pick up the
command line. The module will parse it into fields such
as file names and options.

280 User Guide FTL Moduia-2 Page 75

Directory Search

Multi-tasking

Bit twiddling

The GetFiles module allows you to search disk
directories for file names specified with a wild card
{such as *.MoD).

The Processes module provides the facilities to run
multiple processes. Some of the facilities in the
Processes module are normally part of SYSTEM. We
have separated them out from that module because
there is nothing in the implementation that cannot be
done in FTL Modula-2 with the help of the assembler
and so you may as well have the source to hack.

There are several modules that allow you to perform
low level operations. Conversions allows you to convert
between various sorts of data. FastMove allows you to
move blocks of memory. IntLogic allows you to
perform logical operations in integers.

Direct CP/M Access

The modules cpM and CPMBIOS allow you to directly
access CP/M's BDOS and BIOS. The modules contain
data structures for some of the internals of the
operating system.

Maths Routines

Others

The Maths module provides a number of standard
transcendental functions. This module is sometimes
called MathLib0. The sOLVE module solves sets of
equations Gaussian Elimination. We included this
since in BASIC, to invert a matrix you simply write MAT
INV A=B, and we reasoned that a similar operation
should be available in Modula-2.

The Sort module provides a general in-memory
Quicksort. The Chain and SetUpCall modules allow
you to call other programs. The pebug module is used
in conjunction with the inbuilt compiler facilities to

trace programs.

76

9.3 Terminal Input-Output:
Terminal

Terminal Input-Output is handled with the module Terminal.

The Terminal module treats the screen as a glass teletype. That is,
characters written by the module appear on the screen as if being
presented on a printing terminal (except possibly for overstrikes!)

The module provides routines to read and write single characters
and strings (Read, Write, ReadString, WriteString). The procedure
WriteLn terminates a line; performing a carriage return/line feed on
the terminal. '

Under CP/M, there are three ways in which characters can be read
from the terminal. All three are supported by Terminal. The three
methods are:)

1) Single character input (CP/M function 1)

This method of input is used by the routine Read if buffered
input is not active. The routine will wait until a character is
typed at the terminal. When reading in this mode, no input
editing functions are available. However, if the user types “C,
your program will be terminated by the operating system.
The only way to read ~c is with the BusyRead routine
described in method iii.

i) Buffered input. (CP/M function 10)

This method of input is used if the routine ReadBuffer is
used. Once ReadBuffer has been used, subsequent calls to
Read will read from the buffer instead of reading another
character. When the buffer empties, method one is reverted
to. When this method is used, the user can use all the normal
(command line) editing facilities. For this reason, this
method of input is to be preferred. To use this form of input,
you should call ReadBuffer at the start of each line of input.
The formatted text input-output modules (InOut, SmallIO
etc) do this automatically.

ReadBuffer takes one boolean parameter. If this parameter is
TRUE, the current contents of the input buffer are discarded
and a new line is read.

* 780 User Guide FTL Modula-2 Page 77

i)

Conditional input (CP/M function 11)

This method is used by the BusyRead routine. It returns zero
if no character has been typed and the character typed
otherwise. You should use this routine if you wish to retain
control if no character has been typed, or if you want to
ensure that every character typed at the console is returned
to the program. In the other methods, some characters
(such as ~p and ~s) may be chewed by the operating system
while ~c will terminate the program.

For example, the editor uses BusyRead to read the edit
keystrokes.

Note that, as well as doing output to the terminal through
Terminal, you can use Streams and InOut. Those modules
support file redirection, whereas Terminal does not.
However, Terminal is more efficient (and smaller).

There is a problem with switching between BusyRead and
Read for character input. When you switch, the-last
character read by BusyRead may be read a second time. This
is a problem in CP/M, rather than in this compiler. To
overcome the problem, call ClearCharBuffer after you finish
using BusyRead and before calling Read. Remember that Read
is used by the formatted input-output modules as well.

There are several variables in the Terminal definition module. The
variable CharRoutine allows you to capture the output of characters
to the terminal. This is used by the memory mapped version of the
ScreenI0 module so that it can maintain the current screen
position. To use CharRoutine, assign the address of a procedure
that is to do the character output to CharRoutine and set the
boolean variable CharEnabled to TRUE. For example:

FROM Terminal IMPORT CharRoutine,CharEnabled;

PROCEDURE Writeit (ch:CHAR);

BEGIN (*main program*)

CharRoutine:=Writeit;
CharEnabled:=TRUE

78 FIL Modula-2 — 280 User Guide

BlinkRoutine is called (if enabled by setting BlinkEnabled to TRUE)
every time BusyRead is called. It is primarily used to control blinking
of the cursor in the memory mapped Screen10 module, but you can
no doubt think of other uses for it.

In addition to the routines provided by Terminal, output to the
screen can be performed through the module Screen1o. This module
allows character attributes to be set as well as supporting cursor
positioning and other screen control operations.

This module is used by the full screen editor. The main program
part of ScreenIO reads in the terminal configuration file defined by

the program SETTERM.
Note that the source for ScreenIo is part of the Editor Toolkit.

The ScreenI10 module provides facilities to perform a number of
screen related operations. The procedure ScreenControl can
perform takes a parameter an element of an enumeration Edits.
This allows you to perform operations such as clear screen, draw
graphics boxes and select display attributes. The procedure Gotoxy
is used to position the cursor.

9.4 Low level File Input-Output:
Files

This module is based on the Files module of RT-11, but with some
changes to reflect the changed operation system. One thing that
has not changed, however, is the names of the entry points in the
modules, which are taken from the system call names used under
RT-11.

Use the routine Lookup to open an existing file. Use Create to delete
any existing file and create a new one. The Close routine should
always be used to close a file which has been written to, even if the
file has not been extended. It can also be used for input files without
problems.

It is a good idea to close input files so as to make your programs as
portable as possible. For example, under Unix, failing to close input
files could cause you to run out of file units, which would cause your
program to abort.

280 User Guide FIL Moduia-2 Page 79

Data is read from a file with the routines ReadBlock and
SeqReadBlock and written with the routine writeBlock and
SeqWriteBlock. You must always read or write a multiple of 128
bytes. If you attempt to read less than 128 bytes, then 128 bytes
will be read anyway. This may prove embarrassing if the code is
something like:

ReadBlock (f,ADR(Rec), 0, SIZE (Rec), reply):

and Rec is not a multiple of 128 bytes, since the following variable
will be over-written. To overcome this, you must pad out the variable
to the appropriate size. The functions s1ZE and TSIzE (available from
system) will assist in this. The module streams, described next, -
should be used if you want to read or write exact numbers of bytes
which are not muitiples of 128.

Note the use of the function ADR, which gives the address of a
variable. This function is required frequently in calls to procedures
in Files and also Streams, as these modules use parameters of type
ADDRESS. This must be imported from the module SYSTEM:

FROM SYSTEM IMPORT ADR:

The ReadBlock and WriteBlock routines expect to receive a block
number as one of the parameters.

The routines SeqReadBlock and SeqWriteBlock read and write the
next sequential block of a file. These routines are not in the original
implementation of Modula-2. The RT-11 system has no concept of
sequential input-output to disk files.

Other routines in the riles modules are Delete, which deletes a file

by file name, Rename, which changes the name of a file, and
SetBlock, which repositions a file to a given 128 byte sector.

9.5 Byte Oriented Input-Output:
Streams

If you want to read variable numbers of bytes from a file, the St reams
module should be used. To use the streams module, you must open
a file and then connect it to a stream with a Connect call.

Here is an extended fragment of a module which reads a file and
rewrites it using Streams.

Page 80 FIL Modula-2 280 User Guide

FROM Files IMPORT FILE, Lookup,Create;
FROM Terminal IMPORT WriteString,Writeln;
FROM Streams IMPORT Connect, STREAM,Disconnect,WriteChar,
i ReadChar,EOS,Direction; een
VAR InFile,OutFile:FILE;
InStream,OutStream:STREAM;
reply: INTEGER;
ch:CHAR;
. (* open files, connect to streams*)
Lookup (InFile, 'INPUT.DAT', reply);
IF reply<>0 THEN
WriteString ('INPUT not found');
Writeln;
HALT;
END;
Connect (InStream, InFile, input);
Create (OutFile, 'OUTPUT.DAT', reply);
IF reply<>0 THEN
WriteString('Disk full'):;
Writeln;
HALT;
END;
Connect (OutStream, QutFile, output) ;
(*transfer characters until EOS *)
WHILE NOT EOS(InStream) DO
ReadChar (InStream,ch);
WriteChar (OutStream, ch);
END;
(*Disconnect streams, close files*)
Disconnect (InStream, TRUE) ;
Disconnect (OutStream, TRUE) ;

Note that the second parameter to Disconnect is TRUE. This causes
the files to be closed automatically by Streams. In the case of input
files, it does not matter, under CP/M, if you close the file or not,
though you should make a practice of doing so since it can matter
under other operating systems, such as MSDOS.

In the case of output files, the file must be closed to ensure that the
directory information on disk is updated and that the buffers are
flushed.

280 User Guide FIL Modula-2 Page 81

Programmers who have been using the PDP-11 compiler should
note that the third parameter in the Connect call is different from
the PDP-11 compiler. In this compiler, the third parameter gives the
direction (input or output). In the PDP-11 compiler it was a boolean
variable which distinguished byte streams from word streams. We
used an enumeration so that failure to convert a call from PDP-11
form to this form would give an error at compilation time.
Otherwise, you would have to find the error by testing.

You can read and write bytes and words using the procedures
ReadChar, WriteChar, ReadWord, WriteWord. You can access the
current position and set the position of a file using the routines
GetPos and SetPos.

There are two routines to sense the end of an input stream. EOS
returns TRUE if the stream is at either the physical end of file or if it
is at a logical end of file, as marked by the end of file character lax.
The PhysicalEOS routine returns TRUE only of the actual end of file
has been encountered. Thus, you should use Eos for ASCII files and
Physicalk0S for binary files.

There are also two routines ReadRec and WriteRec, which perform
reads and writes of arbitrary numbers of characters on a stream.
These are not in the standard.

streams has another advantage over Files: the connected file need
not be directed to a disk file; it can be any of the standard CP/M
devices, including the console. This promotes device independence
in Modula-2 programs.

To direct output to a device, open a file with the device name as the
file name (for example PUN:), and then connect it to a stream. The
colon must be given. The Files module knows enough about devices
to be able to open a file for a device, but it cannot actually perform the
input-output to the device. That must be done with Streams.

For an example of the use of these routines, look at the code for the
LIST module. This module also shows how to parse the command
line and how to resolve wild card file names.

Page 82 FIL Modula-2 280 User Guide

9.6 Formatted Input-Output:
InOut, ReallnOut, SmalllO

The modules Inout and RealInOut work with the module Streams to
format numbers, and to read numbers, converting them to real,
integer or cardinal forms.

These modules use a default input and a default output stream.
Routines are provided to change the current streams for input and
output.

When a program is loaded, default streams are connected to the
terminal. This means that you can use InOut and RealInOut to write
formatted output to the terminal without having to worry about
opening files, attaching them to streams and then changing the
streams used by Inout.

The module smal110 can be used in place of Inout if all you want to
do is write numbers to the terminal. Because Sma1110 calls Terminal
rather than Streams, the resulting programs are smaller but you
cannot perform file redirection with Sma1110.

InoOut allows you to stack input and output streams (there is a stack
for each direction). This allows you to output data to a temporary
stream and then switch back to a default stream, without knowing
what the default stream is. These facilities are an extension to the
standard module. In the released version, the stack is only two
levels deep, but you can increase it yourself by changing the array
size in the implementation module and recompiling.

For most purposes, two levels will suffice. The first level is always
taken by the default connections to the terminal. The second level is
avalilable for your own streams.

Let us assume that outStream has been connected to a stream as
shown in the example in the previous section. To write some
formatted numbers to this stream, the code might look like the

following:

Z80 User Guide FIL Modula-2 Page 83

(*switch from default output stream to OutStream*)
SwitchOutStream(QutStream) ;

(*write cardinal x in 4 places*)

WriteCard(x,4);

(*write an end of line*)

WritelLn;

(*return to default output¥*)

PopOutStream;

All these procedures must bé imported from Inout - including
writeLn. Recall that, to avoid problems with conflicts with the
procedure of the same name in Terminal, you can say IMPORT InOut
and then qualify all references to procedures from Inout -
InOut .WritelLn, InOut .PopOutStream etc.

Other procedures in the InOut module are Readst ring which reads
a string of non-blank characters, and ReadLine, which reads to the
end of the line.

ReadString skips input until a non-blank, non-tab character is
found. It returns all characters up to the next blank or tab
character, or up to the end of the line or until the ARRAY OF CHAR
passed as a parameter is full. The returned string will be zero byte
terminated if it shorter than the variable into which it is read.

ReadLine reads all characters up to an end of line. If and end of line
is encountered before the string is full, the string is blank filled (this
makes it easier to read data that is laid out in fixed positions). If the
string fills before the end of line is encountered, the rest of the line is

skipped. ’

There are two constants exported from InOut; EOL and EosCH. EOL is
a character returned by the Inout procedure Read when it
encounters the end of a line. (Do not confuse this procedure with the
procedure of the same name exported from the module Terminal)

Similarly, calling the InOut procedure write with this constant will
output and end of line. This makes the handling of ends of lines
independent of the actual representation of end of line on a
particular machine.

The constant EosCH is the character to return when a read is
performed and the stream is at end of file.

There are also several variables exported from InoOut.

Page 8 FIL Modula-2 280 User Guide

The variable Done is set to TRUE or FALSE to reflect the success or
failure of certain operations. :

In OpenInput and OpenOutput it returns FALSE if the user has
abandoned attempting to open a file by not entering a file name.

In Read, ReadString, ReadLine and SkipEOL, it returns FALSE if end
of file is detected before the operation is complete. In ReadCard and
ReadInt, it returns TRUE if a number is found.

The variable termCH returns the character following a field returned
by ReadString, ReadCard or ReadInt.In the case of these last two, it
is possible for the character to be numeric! This occurs if including
the terminating character as part of the number would cause the
number to overflow. Hence, to check for a being number too large on
input use:

IF termCH IN CharSet{'0'..'9'} THEN
WriteString (' Number too large'); .
END;

The variable AlwaysBuffer is normally set to FALSE. If you set it to
TRUE, any call to the Read routine in Inout that is directed to a
stream that is connected to the console will cause a buffered read of
the console, For most applications, you should probably set it to
TRUE. In buffered mode, the user can use all the normal CP/M editing
keys but none of the characters type is returned to your program
until a return is typed. This is why the default is FALSE - it is
probably more compatible with other compilers.

Reads from the terminal using ReadString, ReadLine, ReadCard and
ReadInt are always buffered.

The variables eolch and ignorech allow you to set the character that
is to mark the ends of lines and a character that is to be ignored
entirely. By default, carriage return is the line terminating
character while line feed is the ignored character. This corresponds
to the normal convention on CP/M. Some programs use line feed to
terminate lines of text. To process files produced by those
programs, you need only assign line feed to eolch.

280 User Guide FTL Modula-2 Page 85

9.7 Memory Allocation: Storage

The standard module Storage allows you to allocate blocks of
memory from the heap.

You will recall that the routines NEw and DISPOSE are mapped to calls
to ALLOCATE and DEALLOCATE by the compiler. These routines must
be imported into any module using NEW or DISPOSE. They need not be
imported from the supplied module Storage, you can replace that
by your own if desired. The name need not even be storage.

In addition to the routines ALLOCATE and DEALLOCATE, the routine .
RELEASE frees all memory above the address passed as a parameter.
This is useful when the heap is used as a stack (that is, the last
object allocated is always the first to be deallocated), since it saves
having to deallocate every pointer explicitly. However, care should be
taken when using RELEASE that no pointers are left dangling into
the released storage.

There is also a function FreeSpace which returms the amount of
space available between the top of the heap and the bottom of the
stack. This is not quite the same thing as the amount of free space,
as the deallocation of space may leave holes in the heap which can be
re-allocated. These holes are not included in the returned value.
Some other implementations call this function MEMAVAIL.

The implementation module for Storage imports a variable from the
module LOADER. This variable is always loaded at the top of the load
module. Hence, its address serves as the address for the start of the
heap.

Note that the heap works its way upwards from this address, while
the stack works its way downwards from the top of the TPA. (The
address for the stack is picked up from absolute address 6 when the
program starts). When they meet in the middle, your program
should fall over.

In the current version of the compiler, heap/stack conflicts are
checked for whenever heap space is allocated, but not when a
procedure is called. As a result, if you are worried that the stack may
overflow the heap (as against the heap overflowing the stack), you
should include an explicit check for the condition yourself.

Page 85 — FIL Modula-2 "280 User Guide

In most programs, there are only a few routines which are called
with the stack at its greatest extent, and the checking need only be
performed in these routines. This is only likely to be a problem if
your routines are recursive.

There is no garbage collection in Modula-2. To do garbage collection,
it would be necessary to know where every pointer to every heap
object is. When you dispose a heap object, a hole is created in the
heap. If this hole is at the top of the heap, the heap is cut back. If it is
next to an existing hole, the holes are merged. When a call to NEW is
made, the list of holes is searched first. The first hole (if any) which
is large enough is used, and any remaining space is retained on the
list of holes (the free list).

This simple scheme works well in practice providing that the objects
you are allocating are of a small number of distinct sizes. If you are
allocating objects of different sizes, it is possible for a hole created by
a large object to be allocated to a slightly smaller object. This can
result in a small hole which is not big enough for any object, and
then that memory is effectively lost until the object on one side or
the other is disposed. Obviously, this never happens if all objects are
the same size.

9.8 Command Line Processing:
Command

The module Command can be used to parse the command line used to
invoke a program.

In CP/M, a buffer at absolute address 80H contains the text of the
command line used to start a program, with the name of the
program removed.

The byte at address 80H contains the count of the number of bytes
in the string starting at 81H. All characters are converted by CP/M

to upper case.

The module Command will break this line up into fields. Each field will
be identified as a name, a string or an option.

For example, in the command line:

Search *.doc 'Mardi' [u

280 User Guide FTL Modula-2 Page 87

Search is the name of the program to be run. It will not be returned
as it is removed by the CP/M command line processor. *.doc is the
first parameter returned, and is a name. Mardi is the second
parameter returned, and is a string. The third parameter (u} is an
option. Note that the quotes are removed from the string and that
the option marker ([or /) is removed from the option.

The module returns a list of parameters in an array of type
Parameter. Each element of the array contains a variable Chars
which is the text of the parameter. This string is zero byte
terminated so that you can use it with Wwritestring etc.

Here is an example piece of code using the module Command. The code
reads two file names from the command line and opens the first as
an input stream and the second as an output stream.

FROM Command IMPORT Parameter,ParClass, GetParams;

FROM Files IMPORT Lookup,Create,FileName,FILE;

FROM Streams IMPORT STREAM, Connect,Disconnect,Direction;
FROM Terminal IMPORT WriteString,WritelLn;

VAR Param:ARRAY [1.2] OF Parameter;
Count : INTEGER;
reply: INTEGER;
InFile,OutFile:FILE;
InStream,CutStream:STREAM;

GetParams (Param, Count) ;
IF Count<>2 THEN. Usage END;
Lookup(InFile, FileName (Param[l]”.Chars),reply):
IF reply<>0 THEN

WriteString(Param{l]".Chars);

WriteString(' not found'):;

Writeln;

HALT;

END;
Connect (InStream, InFile, input) ;
Create(OutFile,FileName (Param{2]".Chars), reply);
IF reply<>0 THEN

WriteString('directory full');

Writeln;

HALT;

END;
Connect (OutStream,OutFile, output);

Page 88. FTL Modula-2 280 User Guide

The procedure VeryQuick from the QuickStr module takes as
parameters two streams. The first is opened as an input stream, the
second an output stream. If file names are given on the command
line, the streams are connected to these files. Otherwise, they are
connected to the console.

The procedure OpenStreams supports more than two streams and
can also return a list of options. This routine can open files or
streams and allows default file names to be given. see the definition
module for OpenStreams for details.

9.9 Directory Search: GetFiles

If a parameter is a file name, and a wild card is allowed, the module
GetFiles can be used to return a list of all the matching file names.
If no wild card is contained within a parameter, GetFiles always
returns the given parameter formatted as a file name, even though
it may not exist on disk. This will work for device names too.

You can use GetFiles to produce disk directories of any disk. For
example:

FROM Files IMPORT FileName;
FROM GetFiles IMPORT GetNames;
FROM Terminal IMPORT WriteString,Writeln;
VAR Names :ARRAY[1..64) OF FileName;
i, j, Count : INTEGER;
BEGIN
GetNames ('*.*',Names,Count) ;
FOR i:=1 TO Count-3 BY 4 DO
FOR j:=i TO i+3 DO
WriteString(Names[jl):
WriteString(' ');
END;

WritelLn;

END;

FOR i:=i TO Count DO
WriteString (Names([j])~
WriteString(' '):

END;

Writeln;

This fragment lists all the files from the logged in disk in four
columns.

280 User Guide ' FTL Modula-2 Page 89

9.10 Sorling Data: Sort

The module Sort can be used to sort any type of data. The module
implements a Quicksort algorithm. While this requires a little more
effort than a 'quick and dirty' bubble sort that you could write
yourself, the improved running speed will be worth it for all but the
smallest sorts. To use the Sort module, you must provide a key
comparison routine. This takes as parameters the addresses of two
records to compare and returns TRUE if they are out of order. Its
header must be of the form:

PROCEDURE Compar (p, q:ADDRESS) : BOOLEAN;

It is often desirable to sort the names returned by GetFiles. Here is
some code that will do this.

First, we need a comparison routine:
TYPE PFileName=POINTER TO FileName;

PROCEDURE Compar (a,b:ADDRESS) :BOOLEAN;
VAR p,q:PFileName;
BEGIN
p:=PFileName (a);
q:=PFileName(b) ;
RETURN p~>q";
END Compar;

Note that, in the example, out of order means that the first value is
greater than the second value, so this comparison routine will cause
the values to be sorted in ascending order. Changing the relation to
be p~<q~ would cause the values to be sorted in descending order.
Note also, that we are using the ability of FTL Modula-2 to compare
strings, which is an extension to the language.

Page 90 FiL Moduia-2 Z80 User Guide

The call to the sort routine (using the names from the example in
the previous section) would be: :

SortRecords (ADR (Names), Count, SIZE (Names[1]), Compar) ;

We pass to the sortRecords routine the address of the data to be
sorted, the number of records in the data, the size of an individual
record (S1ZE (Names[1])) and the name of the comparison routine.
The Sort module requires that all the records are the same length. If
this is not the case, you can sort an array of pointers to the records,
with the comparison routine performing the appropriate
dereference to access the actual data. The code would look
something like this:

TYPE PData=POINTER TO Data;
DataArray=ARRAY[1.100] OF PData;
PDataArray=POINTER TO PData;

VAR DataPointers:ARRAY[1.100] OF PData;

PROCEDURE Compar (a,b:ADDRESS) :BOOLEAN;
VAR p,q:PDataArray:
BEGIN
p:=PDataArray(a):
q:=PDataArray(b):
RETURN p~”~.Key<q"”*.Key
END Compar:;

The two arrows are required in p~+~ and q~~ because the address
passed by the sort routine is the address of the entry in
DataPointers. The first dereference (p~) has as its value the pointer
to the actual data. The second dereference {(p~+) is required to get the
actual data.

It is sometimes desirable, when sorting a file which will not fit in
memory, to create a file of keys and to sort that before re-
assembling the file. Each record in this key file will contain just the
key and a pointer to the record on disk. This technique is most
useful when the records are large compared to the amount of free
memory and the keys are small. This method is known as sorting
on detached keys.

The List module contains an example of the use of sort.

280 User Gukie FTL Moduia-2 Page 91

9.11 Converting Between Data
Types: Conversions

The module Conversions contains a number of routines to convert
from one data type to another. Routines are available to split a word
into its constituent bytes, and to join them together again, to
convert cardinals and integers to strings.

CardToString and IntToString convert cardinals and integers to
strings. The parameters are the value to be converted, the base of
the conversion (base must not be greater than 16), the string to
receive the result, and a variable which receives the number of
characters returned in the string.

The functions LowByte and HighByte return the low order and high
order bytes from a word. Under CP/M, a the most significant byte of
a word is second. That is, a value such as 256 will have 0 in the first
byte and 1 in the second byte. Hence, the function LowByte returns
the first byte from a word, while HighByte returns the high order

byte

The routine MakeWord takes two bytes and combines them to
produce a word.

9.12 Calling Another Program:
Chain, SetUpCall

The module Chain can be used to transfer to another program. Once
you have transferred to that program, the image of your current
program in memory is destroyed, so if you want to return later, the
most you can do is restart the current program from the beginning.

The procedure LoadAndExecute, in Chain, requires an unopened file
control block (fcb) for the file to be loaded as parameter. This can be
created with the routine ConvertFileName from the module Files.

The file control block (fch) is a type which is exported from the
module cpM. This is described in the section on that module.

Page 92 FIL Modula-2 280 User Guide

Some small programs exit by performing a return (ret) instruction.

To accommodate these programs, the LoadAndExecute procedure

places a word of zero on the stack before transferring control to the

ggjw program. This will cause a warm boot when the program
shes.

If the file to which you are attempting to chain does not exist, the
LoadAndExecute procedure exits to the operating system.

You can share variable between programs by using the /D:xxxx
linker flag and ensuring that the modules which are to share data
are all loaded in the same order and at the beginning of the program.
You must, of course, use un-initialized variables, and you must use
the same value for xxxx in both programs. This will ensure that the
data is loaded at identical addresses. Another way to share data is
to use absolute variables but this is fraught with difficulties such as
avoiding the operating system and your own programs.

9.13 Some Low Level Modules:
FastMove, IntLogic

There are a couple of low level modules (written in assembler) which
access some machine instructions to perform operations which
would otherwise be slow.

These modules are IntLogic, which performs logical operations on
integer operands, and FastMove which allows you to move blocks of
memory using the fast block move instructions LDIR (move down)
and LDDR (move up).

The Moveup procedure should be used when an overlapping move is
being performed which moves data higher in memory. The Movedown
procedure should be used when the data is being moved down in
memory. If the two areas do not overlap, it does not matter which
procedure you use. For example:

FROM SYSTEM IMPORT ADR;
FROM FastMove IMPORT Moveup,Movedown;
VAR a:ARRAY[1.300] OF CHAR;

ﬁé&eup(ADR(a[l]),ADR(a[lO]),20);
(* moves a[l] to a[l10], al[2) to a[ll]) etc*)

ﬁé&edown(ADR(a[lO]),ADR(a[1]),20);
(* moves back down¥*)

280 User Guide FTL Modula-2 Page 93

After the call to Moveup in the above example, a(1] through a{9]
remain unchanged. a[10] has the same value as a[1] and a[20] has
the value that was in a[11]. If Movedown had been used for the move
by mistake, then a[20] would have ended up with the same value as
a(2], since the move would start from the bottom of the array and
work up, instead of starting at the top and working down.

Note that the compiler always uses a block move instruction to
move blocks of data, so you only need to make explicit calls to this

module if the nature of the data to be moved is such that it cannot all
be moved by a single assignment statement.

For example, if the size of the area to be moved is not know until the
program is run, then you would have to use these move routines.

The routines Searchup and Searchdown in FastMove will search
upwards or downwards in memory for a string of bytes.

The routine Swap from FastMove will swap two areas of memory
without using any extra memory.

All of the operations performed by routines in IntLogic can also be
performed by re-typing an integer as a BITSET, performing the
required operation and then re-typing it back.

For example,

i :=INTEGER (BITSET (i) *BITSET(3))

Does an AND of the variable i with 3. However, this is ungainly.
9.14 The Module SYSTEM

The module SYSTEM is available in every Modula-2 implementation,
but its contents will vary from implementation to implementation.

There are some special types and functions which can be imported
from the module sYsTEM which break the normal typing rules. These
are the types WORD, BYTE, and ADDRESS, and the functions ADR, SIZE
and TSIZE.

Page 94 Fit. Modula-2 "280 User Guide

The type ADDRESS is defined to be of type POINTER TO BYTE. However,
it is compatible with all pointer types. That is you can assign a
pointer value of any type to a variable of type ADDRESS. and vice-
versa. For example:

FROM SYSTEM IMPORT ADDRESS;
TYPE pInt=POINTER TO INTEGER:
VAR pi:pInt;

pa:ADDRESS;

PROCEDURE a (VAR p:plInt);

pa:=pi; (*assign to ADDRESSY*)
pi:=pa; (*assign from ADDRESSY*)
a(pa): (*use address as parameter¥*)

All of these constructs are valid. Compare this with what would
happen if, for example, a variable of type POINTER TO INTEGER was
assigned to a variable of type POINTER TO CARDINAL. In this latter
case, an incompatible types error would be produced when the
program was compiled.

To emphasize this point, if you were to declare ADDRESS yourself:

ADDRESS=POINTER TO BYTE;

The type would not be the same as that imported from SYSTEM, since
it would not be compattble with pointers to other types.

The ADDRESS type is used when you want to be able to deal with
blocks of memory without reference to the internal structure.
Hence, it is used by Storage when allocating heap space and it is
used by Files when reading and writing blocks from disk files. The
function ADR, described below, is often used to create pointers for
use with ADDRESS parameters.

If you are porting programs from the original PDP-11 compiler,
note that the original RT-11 compiler treats ADDRESS as a pointer to
worD. The change is acceptable because the module sYSTEM is used
for things which vary from machine to machine.

760 User Guide FIL Modula-2 Page 95

The type BYTE is compatible with any one byte value, such as a
character or a boolean value. BYTE is a one byte cardinal. Hence, it
has values in the range 0..255. You can also use BYTE when
declaring a cardinal subrange to cause the resulting type to use only
one byte of storage:

ONCEBYTE=BYTE([0..1]:

If BYTE was not used here, the resulting type would occupy two
bytes, as it would be a subrange of CARDINAL or INTEGER.

The BYTE type is an extension provided by this compiler. It may not
be available on other compilers.

Also, if you declare a parameter to be of type ARRAY OF BYTE, it is
compatible with all actual parameters. This allows you to pass
arbitrary blocks of memory (for example, record structures) to a
routine.

Some other compilers may use ARRAY OF WORD for this purpose.
That would cause great problems with objects with odd numbers of

bytes.

The type WORD is compatible with any two byte value, including
pointers. Also, it is assignment compatible with any one byte value.
When you assign a one byte value to a variable of type worD, the more
significant byte is set to zero.

The function ADR returns the address of a variable. The result is of
type ADDRESS. The ADR function is used with routines such as
ReadRec from the module Files to create a pointer to a block of
memory. See the section on Files for an example. The memory to
which the pointer is being created need not be on the heap.

If you want to do arithmetic on an address, you should use the
standard procedure INC:

INC(pch,SIZE(text)):

In previous versions of the manual, we suggested that you should
use:

pch:=pCHAR (CARDINAL (ADR (text)) +SIZE (text));

Page 96 FIL Modula-2 280 User Guide

We now suggest that this is unwise because, on a segmented
architecture, such as the 8088 large memory model, addresses are
not cardinals. They are not even 32 bit equivalents of cardinals. 18C
for arithmetic on pointers works in all versions of FTL Modula-2
including the Large Memory MSDOS compiler. On the Z80, either
approach will work. In fact, you will find examples of the second
form in the standard modules.

Do not confuse the type ADDRESS when used to modify the type of an
expression with the function ApR. The difference is that ADDRESS
takes an expression as its parameter, but ADR takes a variable.

Hence:

ADDRESS (pch) ;

is the address of the charaeter pointed to by pch. But:

ADR (pch)

is the address of pch itself. In fact: ADDRESS (pch) =ADR (pch™)

The function SIZE returns the size (in bytes) of a variable. The
function Ts1zE returns the size (in bytes) of a type.

In revision 3 of Wirth's book, the s1zt function became a standard
function which did not need to be imported from sysTeEM. This
compiler allows you to use it in that way, or to import it from SYSTEM.
This maintains compatibility with existing programs.

You can use s1zE and TSIZE to pad out a record to 128 bytes for use
with ReadBlock from the module Files.

TYPE Block=RECORD
Count :BYTE[0..20};
Entries:ARRAY{(0..20] OF INTEGER;
Filler:ARRAY([1l..128-SIZE(Entries)-2] OF BYTE;
END;

Alternatively, we could have declared Filler as:

Filler:ARRAY([1..128-SIZE(Count)-21*TSIZE(TEXT)] OF BYTE;

280 User Guide FT1. Modula-2 Page 97

9.15 Direct CP/M Calls:
CPM, CPMBIOS

The module cpM contains definitions for various data structures
used by CP/M , such as the file control block, which is used to
control reading and writing disk files. As well, it contains a set of
mnemonics for calling the BDOS functions.

The module CPMBIOS contains mnemonics and routines for making
direct BIOS calls. Direct BIOS calls allow you to access the internals
of CP/M itself. As a result, they are very powerful but they can be,
dangerous - you can even corrupt your disks.

Using the BDOS calls directly in your programs will result in
programs which are not portable to other operating systems, such
as MSDOS. Using direct BIOS calls will result in programs which
probably will not run on ‘CP/M-like’ systems, such as MP/M and
Earth Computers Z80 card for the IBM-PC. The FTL Modula-2
compiler, and the supplied modules, do not use direct BIOS calls, so
that the compiler and the programs it produces will all run on these
‘CP/M-like' operating systems.

If you want to use these modules directly, a book on CP/M internals,
such as that by Hughes (Lawrence E. Hughes; System
Programming under CP/M-80), is worth getting. There are one or
two other books which cover similar material. Unfortunately, most
books which claim to teach you CP/M either want to teach you how
to use the basic commands, or else want to teach you assembly
language, which leaves little space for interesting topics, such as
how to read strange disk formats.

9.16 Creating Processes:
Processes

This section is not for the faint hearted. Once you get into
processes, you are getting into difficult territory. The concepts
briefly covered in the next few pages comprise the best part of an
entire subject in a Computer Science course.

The Processes module supports multi-tasking. That is, it allows you
to run several processes concurrently.

Page 98 FIL Modula-2 280 User Guide

Of course, as your computer has only one processor, only one
process can be running at any one time. However, the computer can
be made to share processor time between several processes - it is
not necessary for each process to run to completion before the next
one executes. ’

Each process has its own stack and its own program counter. When
you stop executing one process in order to execute another, the
program counter, registers and stack pointer for the currently
running process are saved and those of the process to be restarted
are restored. This operation is called a context switch.

The Processes module in FTL Modula-2 contains not only the
procedures contained in that module in Wirth's book. It also
contains a number of procedures and types which Wirth's book
expects to find in the module sYSTEM. We put them in Processes
because, in this compiler, the code to implement these procedures
could be written in Modula-2 (with some help from the assembler)
so it seemed reasonable that the end user should be able to modify
them.

These procedures are NEWPROCESS, TRANSFER and IOTRANSFER. These
are the basic operations on which all the process operations are
built.

9.16.1 The Basic Procedures

The procedure NEWPROCESS creates a descriptor for a process. This
descriptor is of type ADDRESS. In earlier versions of Modula-2, there
was a type PROCESS which was used for this purpose, but Wirth's
recent amendments have replaced this type with the type ADDRESS.
In the Processes module, you will see a type PROCESS which is
equivalenced to the type ADDRESS. We suggest you use this type for
process variables in order to maximize portability.

The NEWPROCESS procedure is used to create a descriptor for a new
process. It requires four parameters:

1 A parameterless procedure which is to be the starting point
of the process.

2 The address of a work area which will be used for the
process's stack.

3 The size, in bytes, of this work area.

280 User Guide FTL Modula-2 Page 99

4 A variable of type PROCESS which is to receive the new process
descriptor.

To start the new process executing, you must call the procedure
TRANSFER. This procedure takes two parameters.

The first parameter is a variable into which will be placed the
descriptor for the currently executing process, which is about to be
suspended in favour of the new process. The second is the
descriptor of the process to be started. These two may, in fact, be the
same variable. This allows you to switch between two processes by
sharing a process descriptor between them.

For example:
VAR a,wait:PROCESS;

Work:ARRAY[1.100] OF BYTE;
PROCEDURE A;

BEGIN
LOOP
(* do whatever¥)
TRANSFER (a, wait) ;
END;
END A;

BEGIN (*mainline¥*)
NEWPROCESS (A, ADR (Work) , SIZE (Work),a);
TRANSFER (wait,a);

WriteString (' Done');

This example shows the use of both NEWPROCESS and TRANSFER.
Starting with the mainline, the first step is to set up a process
descriptor for the new process, using NEWPROCESS. Next, in the call to
TRANSFER, the mainline is suspended, and its state saved in the
process variable wait. The procedure now executes until it reaches .
the TRANSFER statement in the procedure. This saves the state of the'
procedure in the process varlable a and restores the state saved in
the process variable wait. This results in the mainline continuing
with the statement after its TRANSFER procedure call; in this case the
WriteString statement.

Page 100 1L Modula-2 280 User Guide

So far this looks fairly boring. We have just found a much more
complicated way to do a procedure calll However, this is rather
different for two reasons:

1 We can run several copies of procedure A simultaneously by
doing several NEWPROCESSS and TRANSFERS.

2 If we now do another TRANSFER (wait, a), the process starts
executing, not from the beginning of procedure A, but from
where it left off. That is, it resumes from the next statement
after its TRANSFER statement. This is why we used a LOOP
statement; the process will run for ever, being called from
time to time to do whatever it does.

The final procedure of these three basic procedures is IOTRANSFER.
This procedure is very similar to TRANSFER. It takes three
parameters. The first two are exactly the same as for TRANSFER. that
is, the status of the current process is stored in the process variable
which is the first parameter and the process state is restored from
the variable which is the second parameter.

The third parameter is an interrupt address. When IOTRANSFER is
called, the normal context switch associated with TRANSFER takes
place but, in addition, an interrupt vector is set up. When the
interrupt occurs, the current context is stored back into the second
parameter and the context is restored from the first parameter.
This means that the process containing the IOTRANSFER is resumed.

When the interrupt handler is completed, it can return control to
the interrupted task by using either TRANSFER or IOTRANSFER to
switch contexts again.

Normally, TOTRANSFER only has three parameters but, in the Z80
implementation, there is a fourth parameter. This is a work area in
which the Processes module will set up the context switching code
for the interrupt.

You can use mode 0, mode 1 and mode 2 interrupts. For mode 2
interrupts, you must set the variable Mode2 which is exported from
Processes to TRUE. In the interrupt address is the address of the
two byte flump table entry for the interrupt. (Note that it's the
address of the particular entry, not the address of the entire table).
In modes O and 1 it is the address in low memory to which control is
transferred when the interrupt occurs.

280 User Gukile FIL Modula-2 Page 101

9.16.2 The Pre-packaged
Procedures

As well as the basic procedures, the Processes module contains a
number of procedures which simplify the use of multiple processes.
You should not mix the use of these procedures with those above;
either handle all processes yourself using NEWPROCESS etc, or rely on
the following procedures to do it for you.

A process can be created using the StartProcess procedure. This
procedure takes as parameters the name of a parameterless
procedure and the size of the work area required for the process:

PROCEDURE Procl;
StartProcess (Procl,100);

This starts executing Proc1 using a one hundred byte block from
the heap as a stack for the procedure.

Each process must have its own work space. This is used for the
process's stack. It is up to you to calculate the amount of space
required for the stack, and to pass that value as a second parameter
to startProcess. In the above example, 100 bytes is required for the
process work space. The required storage is allocated from the heap.

Processes can be synchronized with the aid of signals, also
supported by the Processes module. A procedure may wait for a
signal, or it may send a signal. Sending a signal causes a process
that is waiting for the signal to be restarted.

The distributed version of Processes restarts the process which
has been waiting the longest. Wirth in his book gives an example of a
Processes module which restarts the most recently suspended
(which is easier). You can change the code in Processes to
implement a variety of scheduling algorithms. An example may
make this clearer. Consider a main program which creates two
processes:

Page 102 FIL Moduia-2 260 User Guide

MODULE Main;
FROM Processes IMPORT StartProcess,SIGNAL, Send,Wait, Init;

VAR Sign:SIGNAL;
PROCEDURE A;
BEGIN

Wait (Sign);
Wait (Sign);

RETURN

END A;
PROCEDURE B;
BEGIN

Send (Sign);
Send(Sign);
Send(Sign);

RETURN
END B;
BEGIN (*main program*)
Init (Sign); (*must be done first*)
StartProcess (A, 10);
StartProcess(B,10);
HALT;
END Main.

The execution profile of this module is shown on the next page.

280 User Guide FTL Modula-2 Page 103

Main Program Process A Process B
Init (Sign);
StartProcess(A,10)—b

......

Wait (Sign)
44—
StartProcess (B, 10) >
Send(Sign)
4
Wait (Sign)eme—p
Send (Sign)
4—
RETURN
——e
Send(Sign)
RETURN
<

The arrows represent transfers from one process to another. Note
that a process may terminate by executing a RETURN or by falling out
the bottom of the initial procedure.

If a signal is sent but hothlng is waiting, it is ignored, and the
process sending the signal continues.

You are permitted to use Wait and Signal in the main program as
well as in created processes. Beware the situation where everything
is waiting for a signal which can never arrive, because there is
nothing which can be run to Send it.

Poge 104 FiL Moduia-2 780 User Guide

9.17 Mathematical routines:
Maths, Solve

Two of the supplied modules assist with mathematical applications.
The module Maths contains a number of standard mathematical
functions. The formulae for these have been taken from the book
‘Computer Approximation' (HART et al., SIAM Series in Applied
Mathematics, John Wiley and Sons, New York), and are accurate to
at least 15 significant digits.

The module solve provides a means of solving sets of equations
using Gaussian elimination with partial pivoting.

The first parameter to the procedure Gauss in module SOLVE is a
matrix of equations to be solved. The next to parameters give the
depth (number of rows) and length (number of columns) of this
matrix. To solve a set of linear equations, the length would be one
greater than the depth. For example, to solve the equations
2x+y=3;4x+y=6, the matrix would look like:

2 1 3
4 1 6

The depth is two while the length is three. After calling solve, the
right hand side (the last column) is replaced by the solution. The left
hand side is destroyed in the calculation.

The matrix is stored as an array of columns. Because the compiler
does not yet support the multiple dimensioned open array
construct, the size of the columns has been set at 10. Solving
systems bigger than this using Gausian elimination is
problematical. You will probably find it better to use an iterative
method, perhaps combined with sparse matrix techniques.

You can use this procedure to invert a matrix. For example, to invert
the left hand side matrix in the above example, start with the
matrix:

280 User Guide FTL Modula-2 Page 105

That is, the input matrix consists of the matrix to be inverted
followed by the unit matrix. After the call to solve, the result is the
inverse matrix.

9.18 String manipulation: Strings

The module Strings provides a number of procedures for
manipulating strings.

In Modula-2, strings are arrays of characters which have a zero
byte - the character 0x (the NUL character) - as a terminator if they
are shorter than the variable in which they are stored. For example:

VAR a,b:ARRAY([1.10] OF CHAR;
BEGIN
a:='0123456789"';
b:='abcdefqg';

The variable b will have a zero byte terminator. The variable a will not
since the string exactly fits the variable.

There is no length byte in a string. Furthermore, strings are a
standard part of Modula-2, so the problem of buggy and
incompatible implementations of strings that plague Pascal are not
a problem with Modula-2.

The procedures in the strings module are:

Pos search for a substring in a string.

Insert insert characters into a string.

Concat concatenate two strings.

Assign assign a string to another variable. Useful if the"

variables are different lengths or one of them is an
open array, since open arrays cannot be assigned (the
compiler cannot tell how big they are).

Stos Copy Strings with optional blank fill.
Delete delete characters from a string.
Copy copy a substring from a string.

Page 106 FIL Moduia-2 280 User Guide

The complete definitions of these routines can be found in the
definition module for Strings. There is one potential point of
confusion. Indices into strings start at zero, not one. The index is in
fact the number of characters to the left of the first character in the
string. This definition is much more sensible than starting at one
(since the array index of the strings usually starts at zero) but can
cause confusion if you are used to another language.

9.19 Debugging Modula-2
programs: Debug

The module Debug is used with the trace flag (/T) of the compiler and
linker. It will output the trace information for modules which have
been compiled and linked with the /T flag. The method by which this
is done is described in the module.

When you are using program tracing, it is essential that Debug be
imported into every module that is compiled in trace mode, since the
" main program part of Debug must be executed before any part of any
module which is executed with trace. Use the statement

IMPORT Debug;

to achieve this. You may wish to add procedures to Debug to enable
you to tum tracing off and on.

180 User Guide FIL Modula-2 Page 107

Page

108

FIL Modula-2

280 User Guide

10 Memory Layout

The programs produced by this compiler run as ordinary CP/M
.coM files. There is no interpreter to be loaded, nor is it necessary to
have a support program on disk, as with some Basic compilers.

A program consists of executable code, un-initialized data areas,
initialized data areas, a heap and a stack.

The un-initialized data is used for variables that you declare at the
outermost level of a module and which are not given initial values.
Most global variable fall into this category.

Initialized variables are global variables which are given initial values.
So, in the following:

VAR i:INTEGER;
j: INTEGER=2;

The variable i is allocated in the un-initialized variable area while the
variable j is in the initialized data area.

The stack is used for variables declared in procedures. It also
contains the link information to support procedure calls and
returns. The stack always grows from higher addresses to lower.
That is, it grows downwards.

The heap is whatever memory is left. If normally starts after your
code and extends upwards to the stack. As the bottom of the stack
is not in a fixed place, there is memory which can be part of the
stack at one time and part of the heap at another time. Of course, it
cannot be part of both simultaneously.

There are a number of flags you can use to affect the way memory is
organized. Normally, only the /D flag is used. We leave discussion of
the remaining flags to the section on running the compiler. The
default condition is discussed here.

The program starts at the address 100h in memory and works its
way upwards. If no /p flag is used at link time, the data areas for
variables declared at the level of a module (that is, the static
variables), are contained in the .coM file. If a /D flag is used, then only
the variables which have been given initial values are part of the .com
file.

280 User Guide FIL Modula-2 Page 109

If no /s link flag is used. and the /D flag with no explicit start
address is also not used, the stack works down from one less than
the address given in address 6 of memory. Under CP/M, absolute
address 5 always contains a jump to the start of BDOS, so address
6, which is the address field of this instruction, points to the bottom
of the operating system.

If the /D flag is used without an explicit start address, then space for
the static uninitialized variables is allocated from the top of available
memory, as determined from absolute address 6, and it works
downwards. The stack then starts from below the static data.

When you use a debugger, the value at absolute address 6 is altered
to reflect the presence of the debugger. When a debugger is present,
the address is actually a jump to the bottom of the debugger. Hence,
it is possible to run programs produced by this compiler under a
debugger (such as DDT). However, if you use the /D flag with no
parameters, the static data will have been set up at starting at the
address originally given at absolute address 6. As a result, the
program will corrupt the debugger.

If you try to run a program compiled with the /b with no
parameters from within a susMIT file on CP/M Plus the program will
destroy the suBMIT RSX.

This problem is overcome by giving an explicit starting address in
the /D flag, or by omitting the flag altogether.

The heap works its way up from the top of your program. If you have
placed your data at an explicit address, then it starts from above the
data.

Every program requires a display. The display is an area of memory
which is used to retain pointers to the start of areas on the stack
called activation segments. Whenever you call a procedure, an
activation segment is created for the procedure. If the procedure has
any local variables, or any parameters, or if it returns a value (that
is, it is a function), then the register 1x, an internal Z80 register,
points to the activation segment for the duration of the procedure.

Suppose procedure A has another procedure B nested within it.
Then, when B is executing, the 1x register will point to the activation
segment for B. If variables local to A are to be accessed in B, then the
activation segment for A must be accessible. The display is used to
save the activation segment register for A.

Page 110 FTL Modula-2 280 User Guide

Each procedure has a lexical level. This is simply the number of
procedures inside which it is nested plus 1. So that A would have
lexical level 1, B level 2, a procedure nested inside B would have level 3,
and so on. Another procedure following A, not nested inside it, would
once again be at level 1. For each level, there is an entry in the

display.

if a procedure has Up Level Addressing, that is, if a procedure has
procedures nested within it, and those procedures access variables
in the current procedure {including parameters), the display is
modified to reflect the location of the activation segment. To do this,
the current value of the required entry is saved on the stack and
replaced in the display by the new value of IX.

The required location is determined by the nesting level of the
procedure.

The WiITH statement works in a similar fashion. When a WITH
statement is entered, the pointers to the variables in the WITH
header are placed in the display. If a WITH is in the main program
part and is not nested in another WITH statement, it will have lexical
level 1. If it is in a procedure at level 1, such as a it will have level 2,
and so on.

Note that there are several optimizations performed in the call of
procedures.

i) If a procedure has local variables, an activation segment
must be created. This means that space must be taken from
the stack for the local variables.

i) If the procedure has local variables, or parameters, or

returns a result, 1x must be set up.

iii) If the procedure has up level addressing, the display must be
updated.

The compiler only performs those operations which are required, so
for a parameterless proper procedure, no entry or exit code is
generated (except, of course, for a RET instruction).

When a procedure is called, the previous value of 1x is saved on the
stack. Assembly language routines must preserve the value of 1x
across calls. This is the only register which need be preserved.

Z80 User Guide FIL Modula-2 Page 111

The parameters for a procedure are evaluated at the point where the
procedure is called. They are placed on the stack before the call is
made. If the procedure returns a value (i.e. it is a function), then
space is allocated on the stack for the result before any of the
parameters are evaluated.

Parameters are pushed onto the stack in left to right order, so the
left most parameter is furthest up the stack.

Except for one byte parameters, the number of bytes taken up by a
parameter is equal to the size of the parameter. For one byte
parameters, two bytes are used. The significant byte is the byte with
the lower memory address.

Open array parameters always require 6 bytes of stack space. The
first two bytes (higher in memory) contain the address of the
parameter. The next two contain the number of elements in the
array. The final two bytes give the number of bytes contained in the
array. If the parameter is a value parameter, a copy is made by the
called routine, not the calling routine. The actual variable will
therefore be at the bottom of the stack below the activation segment.

Open array parameters are copied onto the stack by a procedure
which is called at the start of the procedure code. This procedure call
is followed by a number of bytes of data which give the position on
the stack of the parameters that are to be copied.

If you disassemble this code, it will often produce illegal or un-

intelligible instruction mnemonics, and it can cause the debugger's
disassembler to lose synchronization with the instruction stream.

10.1 Real Number Formats

Each real number requires 8 bytes of memory. The first byte is the
exponent with a bias of 128. The remaining seven bytes are a twos
complement hexadecimally normalized mantissa.

Because hexadecimal normalization is used, the exponent gives a
power of 16, not a power of two. The mantissa is normalized if the
top nibble is not zero or not hex F, or if the top bit of the second
nibble differs from the top bit of the first nibble.

As a result, the exponent lies between 164127 and 16/-128, which is
about 10E152 and 10E-153 while the mantissa has about six and a
half bytes of significance, which represents about 15 decimal places.

Page 112 FiL Modula-2 Z80 User Guide

Zero is represented by 8 bytes of binary zero.

For example:

1.0 is represented as 81 08 00 00 00 00 00 00
20 is 81 10 00 00 00 00 00 0O
-1.0 is 81 F7 FF FF FF FF FF FF

Because of the high precision of the real numbers in FTL Modula-2,
some of the operators do not execute as quickly as in some other
compilers with lower precision. Also, in the Maths module, more
terms are needed to calculate the standard functions to the
required accuracy. As a result, the compiler will not run floating
point benchmarks as quickly as some other compilers. On the other
hand, you can have more confidence in the results that it does
produce.

10.2 Set Formats

Sets are stored as bit patterns. There is one bit for each possible
value in the set. This bit is a one if the value is in the set and a zero
otherwise.

Sets are stored in correct order. They are not stored 'backwards’; the
first value occupies the most significant bit of the first byte of the
set. Here are some examples of BITSETs which demonstrate this:

CARDINAL({})=0H
CARDINAL({0})=8000H
CARDINAL({7})=100H
CARDINAL({15})=1H
CARDINAL({0..14})=0FFFEH

260 User Guide FIL Moduia-2 Page 113

Page 114 FIL Modula-2 280 User Guide

11 Hints for Efficient
Programs

Here are a few ways in which you can make your programs run
faster. It is best not to worry about these notes until you have got
your program working, as some of these techniques are in direct
opposition to good programming style.

i) Use static or local variables

Recall that the variables at the global level of a module are
always static (even in a nested module). The Z80 can access
static variables several times faster than stack variables.

i) Make array element sizes a power of two. The compiler
performs multiplies by powers of two by repeated adds
(which are faster than shifts), rather than using the general
multiply routine. '

i) Remove local variables and parameters. Parameterless,
variable-less proper procedures are very efficient, since there
is no need to set up the stack frame pointer or the display
and no space for local variables needs to be allocated. The
only overhead compared to having the code in-line is the
call instruction and the ret instruction.

iv) Avoid up level addressing. This saves having to update the
display. Up level addressing occurs when a procedure nested
inside a second procedure accesses variables local to the
second procedure.

V) Use WITH statements for records accessed by pointers. Avoid
WITH statements for global variables. Subfields of a global
(simple) variable can be accessed faster directly than they
can be accessed through a WITH statement.

vi) Use arrays of records rather than separate arrays of the
elements of the record. Combined with a WITH statement,
this can save multiplications.

vii) Use VAR parameters rather than value parameters for
parameters of more than two bytes wherever possible.
Actually, this is a trade off. It takes longer to access a VAR

280 User Guide FTL Modula-2 Page 116

viii)

ix)

parameter, since the pointer to the parameter must be
loaded, but less time to set it up for the call. Access to
reference parameters inside a WITH for the parameter are as
fast as references to a value parameter.

Keep total size of local variables in a procedure small. If an
array is required, declare it last. This allows one byte offsets
from the stack frame pointer to be used.

On the Z80, only 8 bit offsets are available so that compiler
has to change the stack frame pointer to get at variables
which are not in the first 128 bytes. This slows things down
markedly.

Assign an entire structured object rather than assigning
individual elements. The compiler will then be able to use a
block move instruction (such as the Z80's LDIR instruction)
for the entire maove.

Remove as much constant expression evaluation as possible
from loops. This compiler performs no optimization, so any
optimization you can do yourself will be useful.

Page

116 FIL Modula-2 280 User Guide

	pag 000 - 0
	pag 000 - 1
	pag 000 - 2
	pag 000 - 3
	pag 000 - 4
	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116

