ISSUE 7

PRINT—0UT

Price 70p

BIRTHDAY NUMBER

&)
a
orf
H
1]
Q
&)
E
H
g
=
3
o
«
Q
(o]
[t
1)
A
g
o]
K
5]
>
<~
o
[0}
+
42
o
£
=

Contributors are Bob Taylor and Alan Scully

T O L=

INCLUDING

_INDEX—Na.Z
Wiscellaneous

Page 3 — EDITORIAL - OQur birthday issue starts here !

Page 25 -~ SMALL ADS — Spot the genuine bargains

Page 38 - SPECIAL OFFERS — More items for sale

Page 40 ~— SUBSCRIPTIONS — The no—fuss way to get Print-Qut
Page 18 — PUBLIC DOMAIN - The cheapest software around

Page 25 — M/C ASSEMBLER - Details of Print-Out's assembler
Page 26 — NEWS AND VIEWS — More news from the CPC world

Page 41 - COMPETITION - Your chance to win a fahbulous prize
Page 42 - PRIZE QUESTIONNAIRE — Help us to improve Print-Out

)

Page 9 — HOMEEBREW SOFTWARE — More games reviewed...

Prog.

Page 4 /_ BEGINNER'S BASIC - Using Locomotive BASIC

Page 7 ~ FIRMWARE GUIDE - A must for all Machine Code buffs
Page 12 - INIRO TO RSX's — Relocating ycur programs

Page 20 ~ POKING AROUND - Snippets of CPC information

Page 22 ~ MACHINE CODE — The tutorial continues....

Page 27 — DISC NAMER - Get your discs organised

Page 29 ~ ADVANCED BASIC - Looking at Tokens

Page 36 — TWO'S COMPLEMENT - CPC Number Systems explained

We would like to express our thanks to Mr. Gearing and Black Horse Agencies
Januarys for the continued use of their photocopier in producing Print-Out.
Please note that we do not support piracy, unless back-ups are for the sole
use of the original owner.

Every issue of Print-Out is produced by Thomas Defoe (Editor), Mark Gearing
(Assistant Editor) and is protected in the UK by British copyright laws. No
part of this publication may be reproduced in any form, without our express
written permission.The only exception to this are the programs which may be
entered for the sole use of the owner of this fanzine.

Sponsored by
I | BLACK HORSE AGENCIES
8l Januarys

N

Eoitorial

WELCOME TO ISSUE SEVEN OF PRINT-QUT |1t}

As you may have noticed, there has been a major
change to Print-Out as now, after six issues, a
regular name no longer features on the front of
the magazine. Unfortunately, we have had to say
goodbye to Jonathan Haddock, who has decided to
leave Print—Out. None of the authors work full-
time on the magazine but rather do it when they
have the time. And as Jon has been finding that
other occupations require more and more time in
recent months, he has decided that he is unable
to continue writing for Print-Out. Although, at
present, we have no actual replacement for him,
we hope that the magazine will run as smoothly!
We all wish Jon the best of luck in the future.

We hope that you enjoy this issue of Print—-Qut,
and remember that you can order a copy of Issue
Eight of Print-Out in advance — see page 38 for
more details on this & other offers.Please take
this opportunity to fill in the prize question-
naire on page 42 as your opinions and ideas are
very highly valued.

If you've any gqueries or problems with the CPC,
please write to us at the address below & we'll
do our best to solve your problem. We guarantee
that all letters will be answered personally by
one of the writers of Print-Out. The address is
the same for all orders, and is printed below:

PRINT-OUT, 8 Maze Green Road,
Bishop's Stortford, Herts CM23 2PJ.

COMPETITIGN —p4l

A\
Basic| ggrnNNERS BASI

TUTORIAL SOU ND

As was mentioned last issue, there have been scome major charnges to the way
in which the BASIC programming sections are now arranged and there are a couple
of further alterations to come. Unfortunately not all of the BASIC articles were
ready in time for this issue & so we've had to include rather more Machine Code
items than we would normally. Well, next issue will see the start of several new
features on BASIC. In the meantime, Beginner's BASIC will carry on investigating
various commands and 'Advanced BASIC' will continue its examination of the BASIC
Operating System and Farser.This month, we're going to lock at the SOUND command
in its simplest form and also what it does.

At first glance, the SOUND command may seem a complicated beast and a very
daunting prospect. The manual, in its usual helpful way, does nothing to dispel
this belief and the description of the SOUND keyword as

SOUND <channel status>,<tore period>(,<duration>l,<volume>l,<volume envelope>
[.<torne envelope>l,<noise period>33]11]

does not really help matters. All of the things in square brackets. however, are
optional and can be omitted. Hence the SOUND command becomes far mcre manageable
when it is in its simplest form of SOUND <chamnel status>.<{tcne period>.

CHANNELS

Before going any further, I have to confess that I am no musician and Know
virtually nothing about composing, melodies, etc!! However, I do know how to get
the CPC to play something fairly close to music. First, let me explain what the
‘channel status' is and why we have it.

When you have a chord, it involves playing more than one note at a time and
the CPC uses its channel facility to allow it to do this. On the computer you've
three channels, labelled A, B and C for reference, and each of these can be told
to play a different note from each other — they can of course also play the same
note. It might help to think of the channels as being three separate instruments
although this is not strictly true (as they are all produced by cne sound chip).
These channels can be linked or separated in different ways but for now, we will
just consider their straight forward use. Each channel has a number that is ass-
ociated with it, & this number tells the CPC which chamnel to play the note on.

This number is the channel status and the values we are looking at are:
1 Chanrel A only 2 Channel B only 4 Channel C only

Thus, to play a note on channel A only, the channel status would be 1. The next
thing to look at is the ‘tone period'.

The Tone Period is basically a fancy name for the pitch of the note or, in
other words, which note it is that we wish to play. The various values, and the
notes they refer to, are all given in the back of the manual. The reasons as to
how these particular values are derived are also given but I wouldn't worry too
much as all of the information needed is printed in one of the appendices. Just
bear in mind that the higher the number is, the lower the note produced.

If we look up the data for ‘Middle C' we find the following infcrmation:

NOTE FREQUENCY PERIOD RELATIVE ERROR
c 261.626 478 +Q.046% Middle C

You can ignore everything except the name of the note (C) and the period (478).
It's the period number which we have to put in the sound command to produce the

required note. So, to play Middle C on channel A, type: SOUND 1,478
The channel number for A is 1, and the period value for Middle C is 478. To get
International A played, simply change the period value: SOUND 1,284

That is all there is to the SOUND command in its simplest form. At present,
it is not very versatile & we would have a hard time trying to produce anything
vaguely musical. If you listen to any note you will realise that it has several
characteristics. One of these is its pitch (which we have already covered), the
others are its loudness (volume) and its length (duration) and these are two of
the optional parameters of the SOUND command.

DURATION

The first optional item that we come to, is the 'duration’ ie the length of

the note. When this is added, the definition of the SOUND command becomes:
SOUND <channel status>,<tore period>[,<{duration>]

The duration of a note is measured in units which are 1/100th of a second long.
This is all there is to the duration part of the command, and so to play Middle
C for one second on channel A, we would use: SOUND 1,478,100

If we do not specify a 'duration', the length of the note is automatically
assumed to be 20/100ths of a second (ie 0.2 seconds). However, when we are using
a volume envelope as well, there are complications. But as we haven't dealt with
this yet, we'll just forget about it for the time being.

There is just one other thing to notice concerning the duration command. In
real music, you often see two of the same notes following each other. The music-
ian would play these notes with a short gap in between, in order to distinguish

them from one another. Unfortunately, the computer does not. If you type in the

following line SOUND 1,478, 100:80UND 1,478,200 you might expect there
to be two notes of Middle C played one after another (the first lasting 1 second
and the second lasting two seconds). Instead you will get one note lasting three
seconds!!!. To make the distinction between the notes, you need to play a silent
note (ie a rest) and this leads us onto the next section, volume.

The next stage is the note's volume, and this is where things can get a bit
tricky — due mainly to a difference between the 464 and the 6128. On the 464, we
can have volume in the range of @ to 7 (with 7 being the loudest and 8, silent).
However, with the 6128 we get the same range of volume but with different values
— now @ is silent and 15 is the loudest. Thus volume 15 on the 6128, corresponds
to volume 7 on the 464.

Therefore to play middle C on channel A for 1 second at maximum volume, we
would use (for the 464): SOUND 1,478,100,7

(and for the 6128): SOUND 1,478,100,15
This is further confused when we look at volume envelopes but don't worry about
them for the moment.

Going back to the problem we had with two notes rumning into each other, we
now have the solution. To play the two notes of Middle C with a break in between
we would use: SOUND 1,478,100,7:S0UND 1,@,1,0:S0UND 1,478,200,7
The pitch of the middle note does not matter as it is being played at volume 0,
and will never be heard. All it does is delay the second note by a short period
of time (in this case 1/100th of a secord) and thus giving the effect of playing
two separate notes.

That's it for this issue, but next time I'll be loocking at the various tone
and volume envelopes in a special section which is dedicated to BASIC sound pro—
grammning and Beginner's BASIC will also be locking at some more common keywords.

DATA PD LIBRARY

Data PD provides quality FPublic THE TAPE ADVENTURE COLLECTION

Domain software with orders sent
out within 24 hours of receiving.
Now that's sexrvice:

Send a blank tape or disc, a SAE
and 50p for a DATA NEWSLETTER and
the DATA STARTER PACK which
features over 20 programs for you
to try out. So what are you Wait-
ing for? Please make cheque/PO
payable to T.Kingsmill,

DATA PD LIBRARY,

202 PARK STREET LANE, PARK ST.,
ST, ALBAVS, HERTS AL2 2AQ.

FOUR great adventures in one
pack. The adventures, previously
not releagsed on cassette are,.
ISLAND OF CHAOS

AIT EN PL AN ET

LORDS OF MAGIC
REVENGZ OF CHAOS

For the 464/6128 Tape only £4.50
Send cheque/PO tos T.Kingsmill,
202 Park Street Lane, Park St.,
St. Albans,Herts AL2 24Q.

-The Firmware
VITAL READING ON M/CODE

It has been quite a while since Amstrad decided to discontinue the Firmware
Manual for the CPC and few books have been produced to take its place. For those
of you who have never heard of 'The Firmware Manual', here is a brief summary:

Quite simply, the Firmware Manual is the book about how and why the Amstrad
works; it's invaluable to any Machine Code programmer or CPC enthusiast. However
the manual is definitely not for the faint-hearted as it is written in technical
Jjargon. Still, the amount of information that it contains is incredible. In its
many pages it covers topics ranging from ROM expansion to driving the sound chip.
One of the most important sections is its description of the Firmware Jumpblock,
which tells you how to correctly use the Machine Code calls.

Unless you intend to access the lower ROM directly (not a good idea!), any
program which you write in Machine Code will use these firmware calls and their
entry and exit conditions are essential. As there are over 200 of these 'calls’,
it is unlikely that you will be able to remember all of the things that need to
be done before a certain routine is used; arnd this is where the Firmware Manual
comes in very useful.

Now that it has been discontinued, the best book available is the 'Amstrad
Advanced Users Guide' by Daniel Martin (publisher: Glentop ISBN 1-85181-122-2).
However Print-Out intends to provide another option. Over the next half a dozen
issues, we hope to be able to print all of the firmware calls together with the
entry and exit conditions and a brief description of what it does.

First, here is a summary of what information each entry includes. They all
appear in the following form:—

NUMBER ADDRESS to call NAME of the routine
BRIEF DESCRIPTION - what the routine will do when it is called
ENTRY CONDITIONS ~— what has to be done before it can be called
EXIT CONDITIONS — what will have happered to the registers when
the routine has finished being executed

SPECIAL NOTES this part is not always present

The exact number of issues that this will take up has not yet been decided, but
it should give anybody who wishes to progress further with Machine Code enough
information to do so. So here goes with this mammoth task.

002 &BBo® KM INITIALISE
ACTION: This routine will initialise the Key Manager and everything will
be set up as it is when the computer is first swtiched on.
ENTRY: No entry conditions
EXIT: AF,BC,DE,HL will be corrupted; all others preserved

@21

002

003

@07

010

011

&4BBO3
ACTION:
ENTRY:
EXIT:

&BBoS
ACTION:
ENTRY:
EXIT:

&BBO?
ACTION:
ENTRY:
EXIT:

&BBoC
ACTION:
ENTRY:
EXIT:

&BBoF
ACTION:
ENTRY:

EXIT:

&BB12
ACTION:
ENTRY:
EXIT:

&BB1S
ACTION:
ENTRY:
EXIT:

&BB18
ACTION:
ENTRY:
EXIT:

&BB1B
ACTION:
ENTRY:
EXIT:

&BBIE
ACTION:
ENTRY:
EXIT:

&BB21
ACTION:
ENTRY:

EXIT:

KM RESET
This resets the Key Manager (especially indirections and buffers)
No entry conditions
AF,BC,DE,HL will be corrupted; all others preserved

KM WAIT CHAR
Waits for the rnext character from the keyboard
No entry conditions
Carry flag is set to true; A holds the character value; flags are
corrupt; all others preserved

KM READ CHAR
Tests to see if a character is available from the keyboard
No entry conditions
I+ character was available — carry true; A contains character
OTHERWISE — carry false; A corrupt; ALWAYS - others preserved

KM CHAR RETURN
Save a character for the next use of KM WAIT CHAR or KM READ CHAR
A contains the ASCII code of the character to be put back
All registers preserved

KM SET EXPAND
Assigns a string to a key-code
B holds the key-code; C holds the length of the string; HL contains
the address of the string
IF OK = carry true; ELSE - carry false; ALWAYS A,BC,DE,H. corrupt

KM GET EXPAND
Reads a character from an expanded string of characters
A holds an expansion token (a key-code); L holds a character number
IF OK - carry true; A holds character; ELSE - carry false; A corrupt
ALWAYS ~ DE corrupt; all others preserved

KM EXP BUFFER
Set aside a buffer area for character expansion strings
DE holds the address of buffer; HL holds the length of the buffer
IF OK - Carry true; ELSE - carry false; ALWAYS A,BC,DE,H. corrupt

KM WAIT KEY
Waits for a key to be pressed
No entry conditions
Carry true; A holds character; all other registers preserved

KM READ KEY
Test whether a character is available from keyboard; does not wait
No entry conditions
IF available - Carry true, A contains character; ELSE Carry false,
A corrupt; ALWAYS - other registers preserved

KM TEST KEY
Test if a particular key (or joystick) is pressed
A contains the key/joystick number
IF pressed - Zero false; ELSE - Zero true; ALWAYS - Carry false; A
and HL corrupt; C holds SHIFT/CTRL status; all others preserved

KM GET STATE
See state of SHIFT LOCK and CAPS LOCK

No entry conditions
If L holds &FF then SHIFT LOCK is on; if off, L holds &0
If H holds &F then CAPS LOK is on; if off, H holds &0

8

—~ Pomebrew Software —
MAC Il N by Alan Scully

Mac II was a very professional effort and one that I am sure is better than
some of the budget software which you can buy from the shelves. In fact the only
noticeable omissions were the lack of a title screen and music. These apart, the
game was virtually faultless.

The aim of the game is to travel through each level collecting treasure and
avoiding the ghosts. In every maze, there are five treasures to collect but they
are hidden behind locked doors and so it's necessary to get the keys first. Each
maze is quite large and with ten of them on the disc, plus the ability to design
more of your own, there is plenty to keep you entertained.

Although there is no background music, the multi-colour graphics certainly
make up for it. These are truly excellent and are the best I have ever seen in a
homebrew game. They're crisp and clear and make the game seem full of quality.

The game can be played with keys or joystick, & it presents the player with
quite a challenge but I found that it was not so difficult that I got frustrated
immediately. The mazes contain thirty screens, and each level is harder than the
ones before.

The actual layout was well thought out and this gave an uncluttered display.
The only problem with the actual game was that only a small part of the maze was
shown at a time and you couldn't see where the exits onto the next screen were —
this made the map vital. Even though the scrolling was very good, the map took a
while to draw at the beginning of each maze.Despite the lack of any music, there
were some sound effects which added to the atmosphere.

There were some 'extras' which are (r
seldom found in full-price software.One | ™ C i 11—
of these was a Level Designer:; it ought
to have added to the game's appeal but, rrrerer
while it was a very good idea it wasn't ;
terribly well implemented although with s
more thought it could have been so much | “¢y—¢r—~¢—p—
better.The instructions are supplied on | = ——~—r—rr
the disc & could be printed out if reg-— | X

uired.You could also switch the map off, _I—;I.
as well as altering the number of lives r:;[—r
to suit your ability. Lo 3 piipiy

The game was good fun and I'msure | ~ ¢ [“rr & & ="
that many people will enjoy playing it. g
This program is available from Scull PD RERD

(see the article on page 18 for prices/ \-

details) so it shouldn't break the bark.
The address is 119 lLaurel Drive, Green—
hills, East Kilbride, Glasgow G75 3JG.

Avoiding the Ghost

MAC I” A~/ By Alan Scully

Mac III, the second game from Alan for the moment, was again good although
not nearly as professional as Mac II. Having said this, the game had many points
of merit.

It is a bit like 'Pac-Man' in style and layout but this time you control a
small object, called Mac, who has to collect several items from the screen. What
makes it difficult is that the screens have to be completed in a certain time.

The game sounds simple in theory but in practice it is really quite tricky.
Mac has an unusual tendency to bounce off the wall and fly back in the direction
where he came from. While this made the game more interesting, the response was
not particularly good — thus making timing difficult.

Despite this, the actual screens are clear, simple and the graphics, whilst
not being particularly detailed, were varied and were good to look at. There was
a total lack of music and the sound effects were only rudimentary.

The game could have been considerably improved if there were more things to
pick up and if the screens were different. It would also have been more exciting
and unpredictable if there had been a longer time available, and if a few ghosts
had been included for you to avoid.

However, there was enough in the game to keep you busy for a while, and was
fairly addictive. After a time, the screens became a bit repetitive and the game
tended to get tedicus. The plot, whilst not specially original. has some unusual
twists which make for a more interesting & enjoyable game than your average Pac-
Man clone.

In conclusion then, Mac 3 is
a very good game which could have
been much better by the addition
of one or two frills. It is still
a most enjoyvable game for several
hours relaxation & when you cons—
ider that you can buy both Mac II
and Mac 3 (plus a few more games)
for just £1, they represent truly
excellent value—for-money and are
a wonderful introduction to Scull
Public Domain.For further details
of this & other bargains from his
PD library turn to the article on
page 18 for more information) and
his address is;

Getting the Key 119 I_f.mre¥ Drive, Greenhills,
East Kilbride, Glasgow G75 9JG.

10

REVENGE
OF CHAOS by Tony Kingsmill

Revenge of Chaos is the follow up to the adventure game 'Island of Chaos',
which I reviewed favourably in Issue Four of Print-Out. The game keeps the same
basic format as its predecessor — all that changes is the story line.

In 'Island of Chaos' you had to bring about the death of the evil warlcrd,
Baktron, but now he's been reincarnated by powerful magic and he wants revenge.
As part of his plan, he destroyed the city of Brael Ti, killing its inhabitants
instantly. This was just the beginning as his next step was to be much worse...

In the adventure, you play the part of the leader of a group of paladins &
must try to step Baktron from taking over the world. Unfortunately, as luck has
it, the other paladins have a 'pressing engagement' elsewhere & leave you alone
on the island.

The game itself is written using the Quill and the graphics were designed
with the Illustrator. I felt that, although it is the sequel to Island of Chaos,
it was just too similar and so there is not much difference in standard between
the two programs. The adventure had a good leoading screen and fairly descriptive
locations.

As before, the graphics weren't particularly brilliant but there was a not-
iceable improvement from last time. The usual 'save' and 'load' functions, which
are vital with a game like this (it boasts over 76 locations), were incorporated
into the program, along with a 'help' option. Tony also offers a free hint sheet
for Revenge of Chaos if you get really stuck, and this is also the case with his
other games.

The presentation of the game was again good and this gave it a professional
appearance. As for addictiveness, it had some appeal hut I felt that it was just
to similar to other games from the same stable — this should be a plus point for
Tony's previous customers! As the text was the only thing that had changed, this
might mean that some people would find the game a bit boring, but, if you are an
ardent adventure enthusiast, this should be just the thing (as you're guaranteed
hours of puzzlement at an excellent price.

The game costs £3.95 on disc only and comes with a free game, Alien Planet.
This is in the same mould to Revenge of Chaos, although smaller, and so provides
more entertaimment and challenges for the adventure player.

If you don't own a disc drive and are sorry to be missing out on the games,
Tony plans to produce an 'Adventure Compilation' later in the year which will be
available on tape and disc at 'a very reasonable price'. This will include some
of Tony's previous releases, as well as the possibility of a new adventure game
or two. Of course, we'll keep you informed of any further developments.

In the meantime, here is Tony's address;

202 Park Street Lane, Park Street,
St. Albans, Hertfordshire ALZ 22Q0.

1

An introduction to RSXS
(part 3)

RE-LOCATING YOUR CODE

by Bob Taylor

Often there is a need to be able to load RSXs into any reasonable area of
RAM and not at one predetermined location (the area usually used is just above
HIMEM which will itself have been moved to make room for the RSX). In order to
do this some form of re-location routine will be needed to adjust any absolute
addresses which occur in the routines, and move with them. We will not need to
alter any address not within the code that's being moved. (Relocation could be
achieved from BASIC but, since this is an article about Machine Code programm—
ing, we will concentrate on self-relocation using this medium) In an RSX init-
ialisation routine two such address alterations are usually required: those of
the Command Table & of the Command Name Table. Two further locations will need
to be ascertained although we can eliminate the requirement for obtaining their
addresses.

We are helped here by an undocumented facet of the Operating System which
results in the DE register holding the address of entry to a CALLed routine on
entry to the routine. (This only holds true if the CALL, from BASIC of course,
isn't accompanied by any parameters.) Any absolute addresses that are required
will have an offset to this entry point, and so if we add this offset for each
occurrence to the base address, we can obtain the new address needed.There are
two main ways of doing this; which one we choose depends on how many addresses
we have to alter.

1. If there are few alterations to make we can actually load the BC or DE reg—
isters with each offset and add these to the entry address held in HL. The
next routine given gives one method of achieving this:

.intrsx PUSH DE 3—> (1) Entry Point (I use these numbers alongside
; all PUSH and POP instructions to show the depth of
; entries on the Machine Stack.)
.datblk LD H,D sthe 3 instructions starting here will not be needed
3 again so the four bytes involved can be reassigned
; for use as the chaining block.
LD L,E sHL now has the entry address also.
LD (HL) , &9 ;load the entry point with a RET instruction so that
;s the routine cannot be CALlLed a second time.
LD BC,namtbl-intrsx
ADD HL,BC sHL—> .namtbl.
EX DE,HL sDE-> .namtbl; H_-> point of entry.

(cont.)

12

(cont.)
LD BC,comtbl+l-intrsx

ADD H_,BC sHL—> byte after .comtbl.
LD (H),D ;
DEC HL ;
LD (HL ,E ;load .comtbl DEFW with .namtbl address. HL-> .comtbl.
LD B,H
Ltb C,L ;BC—> .comtbl for KL LOG EXT Firmware routire.
POP HL sEntry Point (@) (now no entries left on the stack).
INC HL sHL-> .datblk for KL LOG EXT. We’re using a redundant
; part of this initialisation routine for .datblk.
JP &BCD1 ;to KL LOG EXT Firmware routine.
.comtbl DEFW namtbl ;address used by Firmware RSX handling routine.
. Fsx ;assuming one RSX only, it can start here.
etc

NOTE: We arranged things so that we didn't have to calculate the address of the
Data Block, nor of the entry point for storing the RET byte. Of the two addr-
esses we did calculate, one was the address of where to store the other.

. This last feature is also common to the second method of re-location and it

uses a table of the offsets instead of loading registers directly with them.
Scmetimes the table contains both sets of address offsets; ie where to store
and what to store. This is however unnecessary and only the 'where to store'
offsets need be there, the 'what to store' ones being at their destinations

already, waiting to be picked up. added to, and then re-stored again & thus

saving two bytes per re-locatable address.

N

The RSX routine later in this article has this method of re—location incorpora—
ted into its initialisation routine & shows the 'where to store' offsets being
picked up from a table to create addresses from which existing offsets are then
picked up, converted and re—inserted.

NOTE: By making '.comtbl' follow on from the last entry in the offset table, we
do not have to calculate its address to load into BC for KL LOG EXT — instead
we just pick up the value of HL which now points to .comtbl.

NOTE: The second offset table entry has a further offset added: the +1 makes the
two address bytes the object of the calculations and not the LD HL instruction
itself. This will apply to most addresses which need altering: however, with 4
byte instructions, like some for IX and IY & also some for BC, DE and SP, this
extra offset will need to be +2.0nly when an address is present as a DEFW will
no secondary offset be needed.

The entries in the offset table can be in any order. Usually there will be more

entries required than are shown in the example which has been pared for maximum
efficiency. The addresses to which these entries point have got to be stored as

13

'address—-intrsx' in each case (eg as at .addl). It helps to have as few address
changes as possible, leading to a smaller offset table. We've seen in previous
articles that by using a JR instead of a JP in the Command Table we can reduce
the number requiring adjustment and we have already done so here.This can also
be applied to JPs within the RSX routine itself (although ours is too short to
have any) by replacing with two or more JRs conveniently placed throughout the
code to enable the Program Counter to skip from one to another until the wanted
destination is met. Since this increases the length of the code and also slows
it down slightly (a JR takes two 'T' states longer than a JP, and we are using
at least two JRs instead of one JP), it should only be used where time constr-
aints allow and where a slight increase in room is tolerable.On the other hand
it may be useful if the need for the extra bytes used by the longer re—location
routine can be eliminated by having no extra addresses to adjust.

In the case of sub—routines whose CALL (from M/C) addresses need re—location,
it is not possible to use JRs of course.

Sometimes it's possible to write the code in a different way & eliminating
the CAlls.If the subroutine is used only once, it should be possible to incorp—
orate it into the main routine at the point at which it was CAlled and so elim—
inate the address that way.This has been done with the message printing routine
below which has then been fine tuned for optimum efficiency. Similarly, if it's
called only a few times and it is very short, it might be worth while inserting
copies of it where it was CAlled and so again get rid of the routine altogether.
All of these things have to be weighed up at the time of writing the code ard a
decision made then as to the best approach.

U7 ooV
| IR

[i
CHI N KA

)
==
-

The following routine provides two new RSXs comprising a WRITE for placing
strings in memory with a corresponding READ for retrieving them. The initialis-—
ation routine with which it starts incorporates the second method of relocation
as mentioned above:

.intrsx LD H_,addtbl-intrsx ;note that .datblk is located at the second byte
3 of this instruction.

ADD HL,DE sHL-> addtbl. (DE holds the entry address to .intrsx)

LD B, &2 ;2 offsets of addresses —-> addresses to relocate.
.nxtadr LD A, (HL) ;jget LB of first/mext offset of address.

INC HL

PUSH HL 5—> (1) TBLPOS (Address Table position reached).

LD H, (H.) sget HB of offset.

LD L,A ;HL = offset.

ADD H_,DE ;HL= address of address; ie H_—>address to relocate.

LD A, (HL) ;get LB of this address.

ADD A,E sadd in LB of routine entry point.

14

LD
INC
LD
ADC
LD
POP
INC
DINZ
LD
LD
EX
LD
INC

. namtbl DEFB
DEFB
DEFB
.addtbl DEFW
DEFW
.comtbl DEFW
write SCOF
DEFW

. read OR
DEC
DEC

C

I3

INC
INC
INC

.getstr LD
LD
LD

(HL) ,A
H_

A, (H.)
A,D
(HL) ,A
HL

HL
nxtadr
B,H
C,L
DE,HL
(HL) , &9
H_

&BCD1

sre—-insert corrected LB of address.

;get HB of address.

;add in HB of entry point + any carry from LB addition.
;re—insert corrected HB.

:TBLPOS (@)

;step on to next offset.

;if more offsets — otherwise HL-> .comtbl

;BC—> .comtbl for KL LOG EXT.

sHL-> entry point.

;store RET at entry point to stop re-+unning .intrsx.
;HL—> byte after entry point to be used as Data Block
;for KL LOG EXT.

;to log these RSXs on.

HWRITII ’ I|E|l+&8®
IlREA” ’ I|D|l+&%

200

comtbl—-intrsx
addl+1-intrsx

namtbl-intrsx ;will become address of Name Table after re—location

Q100

A
A
A

Z,getstr
C,parervr
A
NZ,parery
A

1X

IX

H, (IX+1)
L, (IX+®)
A,E

ssignal WRITE’.

sdummy instruction: absorbs the OR A byte following so
; eliminating clearing the Carry flag, being treated as
; LD BC,&B700; rext instruction is first DEC A. 2 °T’

; states guicker than using JR ’first_dec_a’.

;clear Carry: signal "READ’.

jon entry, A held the number of parameters

;DEC A twice does the same as CP &2 but maintains the
; Carry Flag (with a penalty of three extra ’T’ states).
;Zero set if two parameters (READ or WRITE).

;if WRITE and not 2 parameters.

;if READ and > 3 (or <2) parameters).
;clear Zero Flag to signal Length parameter.

step on to string parameter. IX displacements are now
identical whether 2 or 3 parameters were entered. No
further alterations to the IX base address are needed.
get 2nd parameter -

on entry to a routine or RSX with parameters, DE will
hold the last parameter. Assune READ with Length
parameter so save Length in A; it is not necessary to
use high byte (which would be @ anyway). I+ not Length

5

H

;

H

;3 HL=addr of string descriptor.

H

H

;

;

; then A’s contents will be unused.

15

- Move

.parerr

.strerr

.addl

. nxtchr

.prtmes

LD
INC
LD
INC
LD

DEC
DEC
LD
cP

INC
INCG
LD
LD
EX

JR
EX
JR
cP

LD
LD
OR

LD
LDIR

LD
DEFB

LD
LD
LD

JR
LD
INC
OR
JR
DINZ

C, (HL) sget string length from descriptor.

H

E, (HL)

HL

D, (HL) ;DE=addr of start of string (from descriptor).
AF 3—> (1) Carry/Zero Flags and possible Length.

DE

DE ;step back to ’length’ byte before string proper.

A, (DE) ;oet this " length’.
C ;Zero if ’length’ byte and descriptor length match.
NZ,strerr ;if no match then definitely not a string.

DE
DE ;step on again to start of string.
H, (IX+3) j;get lst parameter -
L, (IX+2) ; H.=addr to READ from, or WRITE to.
DE, HL. sassume WRITE so DE->addr to WRITE to; H_—->string start.
AF ;Carry/Zero Flags and possible Length parameter (@).
C,move ;if WRITE then DE, H. and string length set correctly -
DE,HL ;otherwise DE->string for result; H_->addr to READ from.
Z,move ;i READ and no Length parameter.
c scompare Length parameter with length of string — use
; whichever is shortest.
NC, move ;if Length is greater then use string length (in C) -
C,A ;otherwise move Length into C.
A,C
A
z ;if Length/string length is @ then do nothing.
B, &0 ;BC=length to transfer (for LDIR).
stransfer to string if READ, or from string if WRITE.
; to BASIC.
B,1 ;signal 1st error message.
&1 ;oummy line: combines with the next two bytes to appear

; as LD DE,%Q206 if entering at .parerr so avoiding
;5 re-loading B with 2. Next instruction is LD C,B.
B,2 ;signal 2nd error message.
c,B ;save the message number.
H,errmes—intrsx jafter re-location, HL will -> error messages
; starting with "Check Parameters’.

prtmes ;into the message printing routine.

A, (HD) jget first/mext character.

H_ ;step on to following char.

A ;a byte of &0 is used to end a message string.
NZ,nxtchr ;if not the end of the string.

nxtchr jenter routine here; 1st error message goes straight

; into .prtstr, 2nd goes via .nxtchr to find end of 1st
s message.

1€

-prtstr A, (H) sget first/mext char. of string to print.
OR A
CAlLL NZ,&BBSA ;print char if not the end marker; all registers and
; flags preserved.

INC HU sstep on to rext char.

JR NZ,prtstr ;for next character if not end of message marker.

LD A,32

ADD A,C :ERR number; gives 33 for parerr & 34 for strerv.

Lb C,o ;for ROM @ (BASIC).

LD HL,&CBSS ; (RCAF3I for 464); BASIC’s Error Handling routime in ROM.
JP &001B sto FAR CALL to ROM; the Ervror Handling routine alters

; the stack so doesn’t REturn,

.errmes DEFB '"Check Parameters", &0
DEFB "Check String",@0

Although not obvious initially, the routines for WRITE and READ have much in
common and so have been amalgamated into one, using the Carry Flag to indicate
where the two routine paths differ from each other.

T Lz —nz\/
pi i

I I | S o [
JOUJE Uy [y g 7

The full syntax of each RSX follows:

1WRITE ,<Address to store string at>,<String to be stored/(@)String Variable>

The string must be previously assigned to a variable for the 464, which must
then be preceded by @ when used here.

{READ ,<Address to read string from>,<(@)String Variable or (@)Array element
for result>[,<length of string to be read>]

The String Variable must exist before use here; ie it must have been assigned a
string with length equal to or greater than the number of characters to be read
from memory. In the 464, it also must be preceded with @. It is not possible to
use the command form of MID$ as a parameter since this is always interpreted as
its function form. .

If present,the 'Length of string to be read' parameter will be compared with
the length of the result string & the shorter of the two used.If the Length is
shorter than the string, only ‘Length' number of characters will be read from
memory; the rest of the string will remain as before. If the string is shorter
or if this optional parameter is omitted, the whole of the string will be read
into.

In the final article in the series, we shall be looking at the way that RSXs
can be installed in ROMs.

17

SOULL PD LIBRARY

119 laurel Drive, East Rilbride
Clasgow €75 9JC. 03552 24793

One of the major introductions to the library are the demos. To be blunt,
demos are totally useless, but they're wonderful to watch & a delight to listen
to. Unfortunately, there are very few (if any) demo writers in the U.K., but in
Denmark, the competition between demo writers is strong.

The best of the Danish demos come from New Way Cracking and United Amstrad
Crackers. From the demos in my library, N.W.C have the edge. Their demo called
FINAL CREATION must be the best demo available for the CPC.

On loading FINAL CREATION, you're presented with the copy—chain.This allows
you to copy the demo (it uses a special version of DATA format) but best of all,
when you pass it on to your friends, you can leave messages for them which can
never be removed!

After the copy—chain, you're presented with a spectacular display of graph—
ical genius. The screen is enlarged to use the whole monitor, with the top half
showing part of a face & the bottom half showing a massive multi—colour animated
scrolling message. A fantastic tune blasts out from the built—in speaker & this
adds atmosphere to the demo.

If I've not yet convinced you to get some of the demcs, then remember that
it is extremely difficult to describe the quality of graphics & sound in words.
They really have to be seen to be believed.

Most people will agree, Stop Press is an excellent D.T.P. package. But, it
does have it's limitations. One of these is the size of fonts that can be used.
As fonts can only be designed on a 16 by 16 grid, enlarging them to even double
size causes a blocky effect.That got me thinking, what about making a font from
cut-outs? Sounds sensible, doesn't it? So I sat in front of the computer & des—
igned a very large font to be used for headlines & such.The result was a smooth
felt-tip font that was a 100 times better than a normal enlarged one.Of course,
this would not fill up a disk, so I also designed 8 new normal fonts (including
two small fonts as an alternative to the Amstrad one) and a page of clip art —
containing some digitized pictures — to go along with it. The result is PD DISK
79, the ultimate 'add-on' for Stop Press. Disks soon to be released include Art
Disk 2 and Hack Attack which contains 50 pokes & a Multiface Poke DataBase com—
plete with details of over 160 multiface pokes. Adventures Five is also due for
release socn & so is Applications 3. Also look out for a game produced by Glenco
Software using Sprites Alive.This game will be reviewed by Amstrad Computer User
and Scull PD Library will be the first to have it. In fact it should be ready by
the time you read this.

On the next page is a very concise stock list and details on how to order.
as well as a mini-order form (you can photocopy it if you don't want to hack
your valuable copy of this mag!). These should be read carefully, but if you
are unsure of anything, feel free to give me a call on (03552) 24795, Monday

18 to Friday, 7pm to 1lipm only.

PD DISKS LIST — SEPTEMBER 1990 — SCULL PD LIBRARY

01 Serious 1 22 Quiz 1 65 Serious 4

02 Games 1 23 CPM Applications 1 66 Dazzlestar CPM

03 Games 2 24 CPM Applications 2 67 CPM Languages 1

04 Animations 1 25 CPM Applications 3 68 CPM Languages 2

05 Dw 1 26 Games 7 69 CPM Languages 3

06 DW 2 27 Mini Prop (CPM) 70 CPM Applications 4

07 Applications 1 28-33 Demos 1-6 71 Introduction

08 Games 3 34 Mag Indexs 85-87 72-74 JRT Pascal (CPM)

09 Serious 2 35 Phone Codes 75 M Basic (CPM)

10 Games 4 36 Revision Aid 76 CPM Applications 5

11 AI/BEducation/Gfx 37 CPM Assemblers 77 Adv Art Studioc files

12 Games 5 38 CPM Adventure 78 Games 8

13 Animations 2 39 Demos 7 79 Stop Press Clip Art

14 Art Disk 1 40 Demos 8 80 Yet more demos 28

15 Adventwres 1 41 CPM Games 81 Serious 5

16 Geno Adventure 42 Demon PD Disk 1

17 Applications 2 43 Adventures 3 NB: Disks 72-74 must be ordered
18 Games 6 44-61 Demos 9-26 together. 62 requires proof of
19 Adventures 2 62 Over 18's Demos age. Disks 28-33 and 44-61 can
20 CPM Misc 1 63 Vidi Digi Pics be ordered separately and are
21 Serious 3 64 Adventures 4 listed together to save space

PD is available on both 3" and 5.25"
disks. The latter format is only comp-
atible with drives that use 80 tracks,
even though the CPC uses the first 40
tracks only, & either 1 or 2 sides can
be used - in normal 178K or 169K form—
ats.You can get any of the above disks
by sending £1.00 per disk, the correct
amount of disks and an SSAE or you can
receive full details by sending a disk
and SSAE. All of the above selections
require ONE side of a disk only. Also
enclose a blank disk for the stocklist
disk mag. All orders should be send on
the form opposite.

Remember that Rebound and Bandit (2
NON-PD games reviewed in Issue 4) are
still available. They cost £5.00 (for
both) if I supply the disk, or for a
copy—charge of only £1.00 each if you
supply the disk. Rebound is a break—

iGN

I would like to order the following selections

Tick here for Rebound and Bandlt —_

Name
Address

%ele%erne Ibjslrxs enclosed

Money enclosed
Fiild Lhis in and send £ Lo Lhe address below

out clone with a difference, there is
not bat! — "a most professional piece
of software" P-O Issue 4. Bandit is a
fruit machine game with 5 mini-games!
—~ "If you are the gambling type then
this is surely the game for you" P-O
Issue 4. Full details can be found on
the stock list disk mag.

19

SCOLL PR LIRRARY

179 laurel Dr East l’llbrf
Clasgow €75 9 . 03552 247

Che k' BY06CAT & UCX!

M/CODE

POKING AROUND
4 Setection of Uselut Tipo

The two main languages on the CPC, BASIC and Machine Code, both have their
advantages and disadvantages. While Machine Code provides many features that are
unavailable in BASIC, it's difficult to learn & complicated to program. It would
be very useful if we could access these bits of 'Machine Code Magic' from within
our own BASIC programs but unfortunately this is almost impossible in nearly all
cases.However, in the CPC's memory, there are certain addresses that contain the
various bits of information that are necessary for the computer to run correctly.
It's a very simple matter to change the data stored in these addresses from with—
in BASIC, via the POKE command. The only drawback is that you're very limited as
to what you can achieve and that the results are by no means certain. Therefore,
printed below, are various snippets of information (& almost all are in the form
of 'pokes') that I have come across over the years. Whilst none of them are par—
ticularly exciting, they all do things which would either be much harder or even
impossible using BASIC alone.

Un-erasing_files

I'm sure that we all know the terrible feeling when we accidentally erase a
disc file that we had intended to keep. Well, help is at hand. When you erase a
file, it is not immediately removed from the disc but instead is stored in user
area &ES5. The computer then records that the disc space where this file used to
be 1s now free.

User Area &ES is illegal and is not normally accessible but it is possible
to trick the CPC into letting you use all 256 areas by poking the address &A701
with the desired user number. This allows you much greater flexibility over disc
organisation. The side effect is that if you poke &A701 with &S (229), you can
load any files which have been erased.

Unfortunately, because the space that was filled with the 'erased’' file has
been recorded as being free, any program which you save may occupy this space on
the disc. This will also not retrieve files on a disc that has been reformatted.

Removing Spaces

Here's a quick little poke of varied use. If you're one of those people who
like to insert extra spaces in lines (eg. 10 PRINT "Hello") and then wish that
you hadn't included them, possibly to produce the right code in Amstrad Action's
Typewriter program, then the answer is to poke 8ACO0 with &F. This then removes
any extra spaces.

Resetting ‘TIME’

The CPC includes a BASIC function 'TIME'. It records the time that has gone
since you switched the computer on and can be printed using PRINT TIME. However,
there is no way of resetting this clock from within BASIC. But if you enter the
following lines, then you will find that it is reset to O.

10 REM Reset TIME for the 464 10 REM Reset TIME for the 6128
20 POKE &B187,0:POKE &B188,0 20 POKE &B8B4,0:POKE &BBBS3,0
30 POKE &B189,0:POKE &B18A,0 30 POKE &B8Bs,0:POKE &BBB7,0

By changing the numbers that are poked in lines 20 and 30, you can set time to
whatever value that you want. If you're interested, the total time that can be
recorded using the TIME function is about 166 days !! That's enough for me !!

CAPS/SHIFT Lock

If you've ever wanted to be able to turn the CAPS or SHIFT LOCK on/off in a
BASIC program (for example whilst getting a name for the hi-score table) all you
have to do is poke the addresses below with &FF to switch it on and &00 for off.

464 CAPS LOCK &B4ES 6128 CAPS LOCK &BL32
464 SHIFT LOCK &B4E7 6128 SHIFT LOCK &B631

Disabling ESC

A query that seems to come up time and time again is, how to stop the ESC
key from working. The simplest and best method is to poke &BDEE with &C9. This
stops all types of break including the CTRL-SHIFT-ESC. If you want to restore it
to normal, poke &BDEE with &C3.

Useful Calls

There's one last category of meddling that you can do and that is to access
firmware routines direct from BASIC. These are done using the CALL command. The
problem is that you are unable to pass parameters to the Machine Code routine &
SO you are restricted as to what you can achieve. Still, here are some addresses
that you may find useful to CALL.

CALL &BCO2 — resets the colours to those used when first switched on

CALL %0000 — completely resets the computer (equivalent to CTRL-SHIFT-ESC)
CALL &BBO3 - clear key board buffer (has some side effects)

CALL &BBO&6 — waits for a key to be pressed

Next issue we'll see if we can drag up some more useful pokes and things to
do with your CPC. Remember, if you've any of your own then please send them in.

21

Programming the Z80

Machine Thg STAQK

Dode..

We have now looked at some Machine Code programs which are becoming fairly
lengthy and complicated, but there are still one or two common commands that we
have omitted. In this issue, therefore, we are going to look at these commands,
some of which we have already used but not explained.

In the very first part of this series, we were introduced to the registers
(A,B.C,D,E,H,L) and these were likened to BASIC variables except being far more
limited. The obvious problem was that they could only stcre numbers with values
from @ to 255 (pretty small in computing terms). This could be then overcome by
forming register pairs (BC,DE,HL) from them — these could then hold values from
@ to 65535 (ie a 16-bit number).

Whilst this is fine in theory, it does have some limitations. Suppose your
program needed to store and work on four 16-bit numbers (something which is not
unreasonable!), we would find ourselves with a problem — we've got only 4 regi-
sters that are capable of holding such a number!

One way around this would be to poke the numbers into a safe place in mem—
ory when we weren't using them, and then retrieve them when they were required.
This would be a very space consuming exercise, and also very frequent, so we're
thoughtfully provided with a couple of commands to do this — PUSH and FOF.

PUSH AND PO

PUSH and POP are used to preserve and retrieve register pairs for use later
on. The first thing to notice about them is that they can work only on register
pairs, and not on individual registers — however, this is not a problem for all
we do is PUSH or POP the corresponding register pair instead. For example, if B
was to be preserved we would simply use PUSH BC and then to retrieve, it POP BC.

In the previous paragraph, I mentioned a safe place where numbers could be
stored. When using PUSH and POP, one area is allocated for this express purpose
— the Stack. I have heard the Stack being explained in many ways but one of the
best ways of thinking of it is as a pile of boxes. Imagine that each box really
represents a memory location, and so has an address. Unfortunately, these boxes
have lids on, and so the only one that you can look inside is the very top one.
When you give a PUSH command (eg. PUSH HL) the computer takes the number in HL,
and puts it in the top box. If you then do another PUSH (eg. PUSH BC), the CPC
adds another box on top of the pile and puts BC into it. Now, when you come to
POP something off, the only number you can get at is BC.

The Stack is often called a 'last-in, first—out' (LIFO) stack because that
is exactly what it is. You can put things on top of it but ONLY at the top, ard
you can take things ONLY from the top.

22

To illustrate this, follow the below example through:

LD BC,&5789 ; BC = &&5789

LD DE,&3453 ; DE = &3453

LD H.,%&0012 ; HL = 80012

PUSH BC ; stack holds &&789

PUSH DE ; stack holds &3453,%678%9

PUSH HL ; stack holds 0Q012,83453,46789 %
LD HL,0000 ; HL = &0000

LD BC, 0000 ; BC = Q000

LD DE,0000 ;3 DE = &0000

POP HL 3 HL = Q012 stack holds &3453,%6789
PCP DE ; DE = &3454 stack holds &&578%9
POP BC ; BC = 4789 stack is empty

In this, the left hand number on the stack (*) is the number at the top. & the
right most number is the number at the bottom. If you now think you understand
the Stack, try and puzzle over this - the Stack is in fact upside—down (ie the
bottom of the stack is at a higher memory location than the top!!)

The Stack stretches downwards from S&BFFF and could go on for as long as needed
(although it would wipe out the jumpblocks and other important bits if it went
on for tco long).

Fortunately, we don't have to make life complicated for curselves and, as long
as we remember that it is a LIFO stack, we do not need to know which way up it
is and where it 1s located. We can, of course, meddle with the stack by use of
the Stack Pointer (SP)} - more of that later.

So far, we've just been preserving registers for use at a later date, but
we can also use the PUSH and POP commands to do cne or two other things. Using
a Z80, we cannot do load one register pair with another register pair (such as
1D BC,HL), instead we have to go about it in a very long—winded way:

LD HL,&7056 ; HL = 7056
LD A,L s A=L =85
LD C,A ; C=A =236
LD A,H s A=H= %70
LD B,H ;B=A=&7®
: BC = HL = &7056

Using PUSH and POP it i1s much simpler:

LD HL,&7056 ; HL = &7036
PUSH HL ;3 put the number in H_ (&7056) on the top of the stack
POP BC ; take the number from the top of the stack (&7056) and

; put it into BC, ie BC = HL = &7056

23

There's just one other thing to bear in mind when you are dealing with the
Stack and that is that it is not only PUSH and POP which make use of the Stack.
The CALL and RET commands also use it extensively. When a subroutine is CAlled,
from a Machine Code program, this is what happens: firstly the address that the
prograe should return to, when it has done the subroutine, is put on the Stack.
The program then jumps to the subroutine and continues executing the code from
this point. When it encounters a RET instruction, the computer takes the number
from the top of the Stack (the return address) and goes to that place.

All of this works very well until you start using PUSHes and POPs inside a
subroutine. It is then imperative that everything that has been PUSHed onto the
Stack is then removed by use of POP. Below is an example of how NOT to do it:

ORG &8000
CALL hello ; CALL the subroutine labelled ’.hello” The address of
; the LD BC,&C0 instruction is now placed on the Btack
L.D BC,&C0o ; any instruction would have done here
RET ; RETurn to BASIC
hello PUSH HL ;3 put HL on the stack
PUSH BC ; put BC on the stack
LD A,72 3 A= 72 (ASCII for H)
CALL &BBSA ;s print H
POP BC ; take BC off the stack
LD A,105 ; A = 105 (ASCII for i)
CALL &BBSA s print i
RET ;3 RETurn from the subroutine

Unless you are extremely lucky, this program will cause a crash and you'll have
to reset the computer. The reason for this is that, in the subroutine, we put 2
things on the stack and only took 1 off. This left one extra item on the Stack,

and the computer took this as the return address, jumped to it, and....Crashed!

There is just one further feature concerning the stack, the Stack Pointer. This
keeps track of where the top of the Stack is. Every time we PUSH something onto
the Stack, the Stack Pointer is decremented (remember the Stack is upside down)
by two (we are PUSHing a two byte register pair) & when something is POPped the
Stack Pointer is increased by two. Of course, we can alter the Stack Pointer as
if it were a normal register (eg LD SP,&1890 DEC SP etc) ard this can pro—
duce some rather interesting effects — scme of which we will be looking at in a
future issue.

As you can see, the Stack, PUSH and POP are very useful items, without which it
would be even harder to program in Machine Code. They can also be pretty lethal
if not used correctly — so when using the stack, make a note of what you've put
on it and then removed. That way you cannot go wrong!

24

PRINCI~OUT 'S ASSEMDBIL-EHR

As promised last issue, we now have our very own assembler which will allow
you to enter all of the Machine Code programs that are printed in this magazine,
without having to resort to using an expensive alternative.

As we have now got an assembler, we do not intend to print the BASIC Poker
numbers in future issues. However, because of the rather extensive documentation
which needs to accompany the program and also its length, we have been unable to
include it in the magazine (it would have taken up about ten pages). Instead, we
have put it, and full instructions for its use, on this issue's program tape and
disc.

Our assembler has been designed to be, as near as possible, compatible with
Maxam (widely regarded as the standard for assemblers on the CPC) and you should
be able to use it with any other magazines' Machine Code programs. The assembler
uses a common method of entering assembly language lines — namely to put them in
a BASIC program, preceded by a short REM (') and then assembling them through an
RSX. This avoids the need to include a memory hungry 'Text Editor' and makes the
program both powerful and flexible. This also provides the added benefit that we
can supply any Machine Code listings on the program tape/disc as a BASIC program
which can then be assembled (thus saving you typing).

This system is as friendly as is possible for a Machine Code Assembler, and
it tells you of any errors in the way that the code has been written. Due to the
nature of the system it needs an 'END' directive to be included so it knows when
to stop assembling. Full details of this are contained on the tape or disc.

Small dds

FOR SALE OR SWAP — One SOFT 968 FIRMWARE MANUAL,One SOFT 115 DISC HiSoft Pascal,
One DMP 2160 Printer, ,One 256K Memory Expansion with Software. Ideally I
would like to swap for an RS5232 Interface and Modem but I'm also willing
to sell. Also wanted a good C.A.D. System. Terry Gipps, 501 Long Riding,
Basildon, Essex, S$S514 1JW

WANTED — Issue One of Amstrad Computer User and issues April 1989 onwards. Will
pay good price (especially for Issue One) or will swap for as much PD as
deemed reasonable. Alan Scully, 119 Laurel Drive, East Kilbride, Glasgow
G75 9JG. Telephone (03552) 24795.

FOR SALE — 2 Homebrew programs, Casino Blackjack (a realistic simulation of the
gambling game) & Wordsearch (a utility for solving wordsearch puzzles)
As reviewed in Print-Out Issue Six. Both programs cost £4.50 together &
this includes the cost of a disc. Contact Barrie Snell, 19 Rochester Rd,
Southsea, Portsmouth PO4 9BA.

25

News and Views

New Console & Pluses

Amstrad has released its new Plus computers and console, thus ending months
of speculation by the computer press. Whilst it would appear that a large amount
of thought has gone into the design of these new machines, Amstrad seems to have
overlooked some rather important factors in their specifications. Firstly, there
is no tape interface on the 6128 Plus, thus cutting out almost all of the budget
market and removing the option of truly low—cost software. It may be possible to
add an external interface at some later date, but it does not seem very sensible
for Amstrad not to have done it themselves. Another major problem, the different
style of expansion connectors from the old CPC, seems to have been solved by the
use of a small plug-in adaptor available from W.A.V.E.

I must say that the custom hardware chip certainly makes the computers look
on & par with the Atari ST, although why the sound could not have been more rad-—
ically improved at the same time, is beyond me. When it comes to existing owners
upgrading., I think the most sericus problem that Amstrad will face is the worry—
ing lack of information about compatibility between machines. We have been told
that 99% of software will work on both the old CPCs and the new Pluses. but what
about all of the hardware? I am not prepared to buy a Plus until I know that all
my add-ons, ROMS, etc will operate correctly. There's no doubt, in my mind, that
Amstrad could have a very successful computer in the Pluses. but the question is
will they be able to capitalize on it. Only time will tell.

The new console also locks as if it may have a rough time, unless the price
of cartridge software drops from the quite staggering £30 that is being asked at
present. After all, cheap it may be, but it's up against some fairly stiff COomp—
etition from the likes of Nintendo.

Spectrum +3 dropped

Also in the last couple of weeks. Amstrad have made what is, in my opinion,
a very sensible move — they've dropped one of the Spectrums. The Spectrum Plus 3
is no more, thus making way for the far superior 6128 Plus — its main rival. The
news came as a bit of a shock to Spectrum owners but it certainly shows us where
Amstrad's priorities lie (at present).However, all of this has been overshadowed
by the new 'Generation 3 PCs' which are due for a launch in the near future, and
Amstrad are pinning their hopes on the success of these computers to raise their
flagging fortunes. After another disastrous year with its audio and video range,
Amstrad desperately needs some good news as they have recently announced another
downtwrn in pre-tax profits. Let's hope that Amstrad have finally got everything
sorted out !!

26

DISC

© | NAMER

[——\ ==

The purpose of this utility is to provide an identity for each side of a
disc whenever it is CATalogued. The idea comes from MS-DOS and DR-DOS (as used
on the IBM PC and other computers) where each disc is allowed a 'Volume' name to
identify it (both sides of each disc are treated as the one disc).

Of course we have to turn owr discs over to access another side, and so it
becomes doubly useful to be able to tell which side of which disc we are using.
The 'name’ written to the disc by this utility is inserted in the disc's Direct—
ory area so that it appears on the screen each time we use CAT. In doing so it
takes up one of the possible Directory entries leaving 63 available, but never
having run out of directory space. I don't see this as a problem for most users.

-t INCum
RN

It is possible to have up to ten characters in the name. However. when it
is printed by CAT a full stop will appear between the 7th and 8th characters so
it is best to arrange your name to fit in with this.

A space is automatically placed before the name when written, with the end
result that the title will be the first name printed by the CAT. A further aid
to clarity is to use lower case for any letters, to make it obvious that it is
not the name of a file.

This utility works only on discs which have been previously formatted with
SYSTEM or DATA. The routine will trap such errors as disc missing, no name,name
too long, etc. and also allow renaming of sides. First, type in the loader pro—
gram below (and save it before running it).

AV
Il

When RUN it will prompt you to press 'S' to save the code as 'NAMEDISC.BIN'.
The routine is now ready to use (NB &90D bytes of space are needed). For future

use just use: MEMORY &7FFF:LOAD"NAMEDISC. BIN"

I ENENEEINGT,. T 22T uzum

NI IR e 1 INLHZINTTH
The syntax to use for naming a side of a disc is: CALL &B000O, "name"
However, unfortunate 464 users will have to use : a$="name" :CALL. &B0O0O, Ras

Remember that you will need to name both sides of a disc separately as a CPC
treats them as if they were two completely different discs. So simply turn the
disc over and then name the other side.

27

[F1] 1@ 'Disc Namer Loader by R Taylor for PRINT-OUT (Public Domain 1999®)

{C1] 20 MEMORY &7FFF:RESTORE 110:PRINT:PRINT"Please wait a few seconds"

[19] 3@ FOR 1in=0 TO &10D/B-1:total=0:FOR n=0 TO 7:READ a$

[A2]) 40 byte=VAL ("&'"+a%$) : POKE &B000+1ink8+n,byte

[4B]1 5@ total=total+byte:NEXT n

{211 62 READ a%:IF VAL ("&"+a$)<>total THEN PRINT:PRINT"Error in line"linX10+110
:END

[C41 70 NEXT lin

[BB] 80 PRINT:PRINT"All M/C loaded":PRINT:PRINT"Press ’S’ to save M/C as
NAMEDISC. BIN":WHILE INKEY$="":WEND:IF INKEY(60)<{>-1 THEN SAVE
"NAMEDISC. BIN", B, &8000,&1@D

[88] 90 PRINT:PRINT"To Load and Initialise Disc Namer with a program present
just Enter:":PRINT"MEMORY &7FFF:LOAD"CHRS (34) "NAMEDISC.BIN"CHRSE (34) "
CALL &Bo00":PRINT"in Direct Command Mode"

[EA] 100 END

[EA] t1@ DATA 3D,C0,21,CA,80,CD,D4,BC,4C5

[AC1 120 DATA DO,DF,Ct,80,06,04,3R/,51,385

[371 13@ DATA BE,EL,FQ,BO,4F,FE,44,16,4EB

{D?1 140 DATA 02,28,02,16,00,1E,00,21,081

[C46]1 150 DATA B9,A9,ES,DS,C5,DF,C4,80,5FB

[92] 16@ DATA 30,25,06,10,11,EF,01,19,185

[631 17@ DATA 7E,B7,28, 1F,FE,ES,28,3B,3C2

—
,
[BDI 180 DATA 11,E0,FF,10,F2,C1,D1,E1,565 Lﬁm@@ﬂﬂ@@ﬂ@@[ﬁ

[BC] 19@ DATA @D, 10,DF,21,CB,80,C3,B8,3E3

™

[Cs1 200 DATA 80,21,FC,89,CD,B8,80,F1,513 A PROGRAM TYPING AID

et el Y
Linecheck codes which are enc—

[661 230 DATA CD,B8,80,21,F1,80,CD,B8,31C losed in brackets at the start

[65]1 240 DATA 80,E1,CD,06,BB,E6,SF,FE,S32 of a line. Don't enter them in

[7B1 250 DATA 59,20,DC,11,F1,FF, 19,356,305 a?tﬁheY're designed to be used

[SD1 260 DATA 00,23,36,20,23,EB, DD, b6, 2CA :;rorglEgggegtggngt?neéiﬁégzgg

[C81 270 DATA o1,DD,4E,00,7E,FE,0B,30,303 which appear in this magazine.

[361 280 DATA CO,4F,23,7E,23,66,6F ,0b,20E Please note, all programs will

[1E] 29¢ DATA 00,ED,BO,EB,7D,E6, IF,D6,4EQ run whether Linechecker is be-

[(B&1 300 DATA 1D,30,0A,2F,B7,28,06,47,182 ing used or not. For informat-
ion on how to use Linechecker,

[8C1 310 DATA 36,20,23,10,FB,06, 14,36, 1D4 please see Issue Three.

[EF1 320 DATA 00,23,10,FB,C1,D1,E1,DF,480

[CB1 330 DATA C7,80,11,0C,81,C3,98,BC,3FF v

[8B1 340 DATA 7E,B7,C8,CD,SA,BB,23,18,41A n

[DS1 350 DATA F7,4C,CS,07,66,C6,07,4E,3B0 u I

[C91 360 DATA Cb,07,02,44,69,72,65,63,376 | I |

[4E1 370 DATA 74,6F,72,79,20,66,75,6C,335 S

[951 380 DATA &C,0R,0D,00,44,469,73,63,206 === ==

[CD] 390 DATA 20,61,6C,72,685,61,64,79,302 (L

[6A1 400 DATA 20,4E,61,6D,85,64,20,22,267
[C2] 410 DATA 00,22,0A,0D,52,65,6E,61, 1BF
[7C1 420 DATA &D,65,3F,00,0R,0D,4E,61, 107
[9B1 430 DATA &D,65,20,74,6F ,6F,20,6C, 2D0
(511 440 DATA &F,6E,67,00,00,00,00,00, 144

28

ADVANCED BASIC ~

BASIC tokens

BY Bob Taylor

The Operating System stores BASIC Commands and Functions in memory (and on
Disc) not as a string of letters as we see them when printed on the screen, but
by using a system of substitute values, which are called Tokens, & I thought it
would be useful to provide you with an extended list of these Tokens and other
codes used in the PROGRAM AREA of memory.

I suggest that you confirm for yourselves the information given in this article
by using the BASIC program in listing 1.Type in extra lines containing examples
of Tokens (using Line Numbers from 10 to 90 only) and then use RUN 1000, RUN or
GOTO 1000 as the case warrants. You will notice that the value of every byte is
given in Hexadecimal format which gives a clearer display than using decimal.

Listing 1:

{441 1000 line.start=&170

[BB1 1010 line.length=PEEK(line.start)+256¥PEEK(line.start +1)

(D61 1020 limne.number=PEEK(line.start+2)+256%PEEK (line.start+3): IF line.number
>99 GOTO 1070

[CE] 1030 PRINT:PRINT line.rnumber" ("STR$(line.length)')";

[F6] 1040 FOR n=lirme.start TO line.start+line.length-1

[7A1 10590 PRINT" "HEX$(PEEK(N),2);:NEXT

[06] 1060 line.start=line.start+line.length:G0OTO 1010

[2A1 1070 PRINT:END

When run, the program will print out data for any lines present, which are
numbered less than 100. Each line's data will start on a new line and will give
the LINE NUMBER in decimal followed by a figure in brackets. This is the LENGTH
(also in decimal) of the line. Finally, there will be a sequence of Hexadecimal
representations (without the '&' prefix for clarity) of the contents of all the
bytes in that line, starting with the length bytes.

The LINE NUMBER is obtained from the third and fourth bytes of the line &
the LENGTH from the first and second bytes by using the method explained below
for calculating numbers from two byte values. Incidentally, while you can only
type in 255 characters for each program line, it is possible to have some line
lengths much longer than this (304 bytes is the maximum since this is the size
of the LINE INPUT area for tokenised lines) and the reason is given below. The
last byte in each program line is the END OF LINE MARKER, byte &00.

29

Tokens are used to store such things as COMMANDS & FUNCTIONS in a program
in a much more compact form; compact because a Token usually only occupies one
byte of space compared to 9 characters required to write some COMMANDS. Tokens
are also used to indicate the different types of VARIABLES and even to express
various ranges of Numbers but often in these cases more space is required than
in the original text (this is the reason for the longer line lengths) .Here, as
in the case of Commands and Functions, the real gain is in the speed of handl-
ing of BASIC, when RUN, since the line is in a more 'digestible' form for the
Operating System.

I have split the Tokens into two tables. Those in the second list are all
Functions and must be preceded by a byte of &FF. The first table is by far the
most extensive and contains the Tokens for all the COMMANDS, for VARIABLES, for
NUMBERS and for SEPARATORS and DELIMITERS. Also included here are three Funct-
ions: 'MID$' and 'FN' which also double as Commands but use an identical Token
for- both forms; and 'ERL’ which is only a Function. None of these three have a
preceding &F byte in their Function usage.

A few Command Tokens are preceded by a byte of &01 and another’s followed
by &00; these bytes are inserted automatically by the BASIC Editing routine as
the lire concerrmed is ENTERed into the program, but their presence will not be
seen when the line is LISTed or EDITed.

Note the coincidence in the use of &9 to represent BASIC's RETURN command
as well as being the code for the Assembly Language 'RET' mnemonic.

Six Tokens are used to indicate the different types of Variables and these
have values of &02,%03,%04,%0B,&0C,&0D to show whether the Variable is Integer,
String,Real,DEFINT,DEFSTR or DEFREAL/undefined respectively. There then follow,
not tokens,but two distance bytes to facilitate speedy location of the required
variable in the 'VARIABLES AREA' in memory. Upon ENTERing a line these are left
blank and contain &00 and &00.However, after this section of the program's been
RUN, they usually contain the distance from three bytes before the start of the
Variables area (which is the END OF LINE MARKER at the end of the last line of
the Program) to the first character of the name of the Variable where it's sto—
red in the Variables Area.Having the distance already calculated will save time
whenever this part of the program is encountered again. The distance is stored
with the low byte first, high byte second in the standard way.

The BASIC Parser (that part of the Operating System which scans along each
program line at run time and puts the Instructions there into action) takes any
'distance' wvalue other than &0000 and uses it without checking its validity (do
not try poking Variable distance bytes). If &0000 is present, because that part
of the program has not yet been used, then the Variables Area is searched from
the beginning for the required Variable and when found, the correct distance is
stored in these distance bytes. There are some exceptions to this, however:; eg.
the distance bytes of a norn—existent variable cannot be calculated of course so
if an Instruction just refers to a previously unused Variable without requiring

30

it to be established (in the case of PRINT)} then the distance bytes will remain
empty.

Like the handling of Line Numbers (see later) Variable distances are reset
(to the original &00 and &00 in their case) on amending any line of a program.
Following the distance bytes come the actual characters of the Variable's name
exactly as typed in, lower or upper case, letter or digit, except that the last
character of the name has its bit 7 set, ie. it has &80 or 128 decimal added to
it. There can be up to 40 characters in a name (letters, digits, "." and "#"
although the latter can only be the first or last char and is ignored anyway).
All the above also applies to Control Variables (those used with the FOR
command) which will appear indistinguishable from normal Variables.
Similarly with the Variables which are used as Function Names with DEF FN's and
FN's, although it should be pointed out that in the Variables Area, Function
Name Variables exist separately from any normal Variables with the same names.

ARRAYS

At first sight it's easy to mistake a tokenised Array for a Variable; there
is a type byte (using the same Tokens as for Variables) followed by two distance
bytes, then the Name characters, again as for Variables). Already, however we've
missed one difference — the distance bytes now give the distance from five bytes
before the Arrays Area (cf. with that for Variables area) to the first character
in the name of the required Array where it is stored in the Array area.Quite why
the distance reference points chosen for Variables & Arrays should be where they
are, is beyond me.The other big difference is that the name of the Array (in the
program area) is followed by one or more subscript numbers separated by commas &
enclosed by brackets; the forms of these numbers are as given below.

RSXS

The special symbol '1', used for User Commands like RSXs, has a byte of &00
inserted following its ASCII when used in this way, giving the sequence &7C &00.
Following this, come the actual characters (converted to upper case) & digits of
the RSX name, with the last one having bit 7 set.Any parameters which follow are
separated by commas (ASCII &2C), the parameters themselves being Variables (Num—

ber or String), Strings (6128 only) and Numbers.

NUMBERS

The method of representing Numbers with tokens varies considerably, as some
Numbers are wholly represented by a discrete Token while others have one of sev-
eral common Tokens followed by the value required in 1,2 or 5 byte form. But one
thing to notice about all Number representations,in the Program Area at least,is
that they are all positive — if a negative Number is required then a byte of &F5
will precede the Token of the Number concerned which will itself be positive.

1) INTBEGERS from O to 9: these are wholly represented by Tokens &0E to &17 resp—

ectively with no following value bytes; ie to calculate the Number just subtract
&0E (14 decimal) from the Token (eg &13 - &OE = 5)

31

2) INTEGERS from 10 to 255 decimal:these have the common Token &19 followed by a
single byte containing the value; eg &19 &0A would be 10 decimal. This is one of
the few times where it would be easier to use decimal format for the contents of
the value byte to get a clear understanding of the exact correlation between the
value of the byte and the number represented.)

3) INTEGERS from 256 to 32767 decimal: the common Token here is &l1A followed by
two bytes containing the Number; eg 256 decimal would be present as &lA &00 &01,
and 257 as &1A &01 &01. When two byte values are used by microprocessors such as
the ZILOG Z8OA used in the Amstrad the least significant byte (LSB) comes before
the most significant byte (MSB). The value is calculated from LSB + 256 x M3B.

4) INTHGERS which are less than —-32767, greater than 32767, or any non—integers
(ie. those which have anything other than O to the right of the decimal point):
The common Token is &1F, followed by four bytes which hold a part of the Number
called the Mantissa and these bytes are followed by 1 byte holding another part
of the Number called the exponent.An explanation of this five byte value format
is very involved and really beyond the scope of this article, but I am sure the
Editor will oblige with space in a later Issue if some of you would like one.In
the meantime here are a few actual examples you could meet:

&1F &00 &00 &0O0 &00 &7F = 0.25

&1F &0 &00 &00 &00 &80 = 0.5

&1F &00 00 &FF &7F &0 = 65535

&1F &00 &00 00 &00 &91 = 65536

&1F &00 &80 &0 &0 &91 = 65537
Negative floating point Numbers are never found in the Program Area but could be
present in the Variables Area as a value of a REAL variable. Such REAL variables
can only contain Numbers expressed in 5 byte form, so even integers from -32767
to 32767 will also be stored in this way & not in the various formats applicable
to the Program Area).

NON DECIMAI, NUMBERS
1) BINARY NUMBERS, which we type into our programs preceded by 8X have the Token
&1B followed by 2 bytes containing the Number (converted to Hexadecimal);
eg &X1100100110001111 gives &1B &8F &C9
2) HEXADECIMAL NUMBERS have the next Token &1C followed by the 2 byte Number;
eg. &FF00 would be &1C &00 &FF.

LINE NUMBERS
By this I mean not those at the beginning of each line but those associated
with Commands such as GOTO or GOSUB etc. Line Numbers used in this way have one
of two Tokens allocated depending upon whether the program has been run or not.
1) When a Program Line is typed, the Token used is &1E, which is followed by the
Line Number itself in two byte form. This is what the BASIC Parser encounters
the first time such a Command is met -

32

2) At this point, the whole program is searched for the required line & on find-
ing it, the address of the byte before this wanted line is stored in place of
the Line Number we originally typed in. Also, the Token before these address
bytes is changed from &1E to &1D. On encountering this Command a second time,
the address is used straight away for the purpose intended without having to
search the program all over again, thus making Locomotive BASIC even faster.
There is no danger of a false address being left when the program is amended
because all the Line Numbers are reinserted in place of addresses before any
alterations can be implemented; ie before a line is DELETEd or ENTERed.

However, the BASIC Operating System seems to be somewhat inconsistent in its
treatment of all the Instructions which take Line Number parameters. It changes
some Line Numbers to addresses but not others.For example, ELSE, GOSUB, RESUME,
RUN and THEN are always changed; but AUTO,DELETE,EDIT and LIST aren't.

The rest vary from one another; GOTO is usually changed, but not after an ON
ERROR or ON <expression>; RENUM only changes Numbers that occur as actual Lines
in the Program before renumbering — even the STEP parameter is treated in this
way.

NUMBERS IN DATA STATEMENTS

Parameters after a DATA statement can be strings or numbers. An all digit entry
without enclosing quotation marks could be a number or a string, even though it
loocks like a number. Evidently, it would be awkward for the ENTERing routine to
treat all entries that look like numbers as numbers, convert them to one of the
forms detailed above and then for the BASIC Parser to find that it was a string
after all. So each digit in a DATA parameter is present in its ASCII code form.

MISCELLANEQUS
1) Whenever a program line is ENTERed, a byte of &0 is added to the end of the
line we have just typed, before it is inserted into the program; this then acts

as an End of Line marker.

2) Between statements in a line we type a colon as a separator. This is altered
to a byte of &1, when the line is ENTERed. When LISTing a line, this &01 Token
is printed as a ':'

3) The comma and the semi—colon are both used as separators between PRINT items
and in INPUT statements and the comma is also used between parameters with many
Instructions; in all such cases these will appear as their ASCII codes (&2C and
&3B respectively)

4) The SPACE character (eg after Commands with following numbers) appears as its
ASCII (&20), although some spaces are deleted as superfluous on ENTERing a line;
eg that after the Line Number at the start of a line. The LISTing routine prints
a space after the Line Number automatically. If we type in two spaces after the
Line Number then the first one is deleted but the second is still present & will
be printed as a second space.

3) Quotation Marks (") are used to delimit Strings & appear as their ASCII (&22).

33

6) Opening and closing Brackets & the Hash - (,),#¥ - are used in connection

with numbers and the brackets also with Functions and these three also appear as
their ASCII codes (&28, 829 and &23 respectively).

7) The Amstrad has 256 printable characters and in theory any of them may occur

after a 'REM' or ''' (short REM), and any, except for the Quotation Mark itself

(which would end a String anyway) may occur inside Quotation Marks, each as its

ASCII code. However, the NUL character (ASCII &00), as well as being impossible

to copy, would throw a spanner in the works of the LISTing routine if it occur—

red under these circumstances, and thus resulting in apparently shortened lines

and sometimes strange Line Numbers. Any line, containing such a NUL, brought to

the screen with EDIT and then re-ENTERed will be permanently shortened. Any line
with three consecutive NUL's will cause the Program to END at the NUL's. This is
because the Parser takes the first 'NUL' to be the end of a line. and checks the
following two bytes to see if they are a valid line length for the next line; a

'length' of &0000 signals the end of the Program (no matter how much longer the

Program actually is) and the Parser then returns control to Direct Command Mode

with the usual 'Ready' message. However bytes of &00 can occur in a line (eg as

a Variable distance or as Number value bytes) without having these effects.

Any formatting characters used with DEC$ or with the USING gualifier for PRINT,
will also appear as their normal ASCII's since they too are enclosed by quotes.
In a DATA statement, in the case of delimited strings the above applies.
However if quotation marks are not used, then, with the exception of the quotes
character again, only those characters between [SPACE] and the shaded character
with ASCII code &7F or 127 decimal may be used.Any Control Code characters with
ASCII's below &20 that are typed in will be replaced with spaces, and any char—
acters with codes above &7F will be deleted.

As any bytes found in a Program line could be a Token or part of a distance,
address, value or name they need to be interpreted in the context of the line &
not taken at their immediate face value.

I hope that these gleanings will be of help and interest to you and give you
a clearer insight into the workings of our excellent computers.I only wish that
somecne else had published them at the introduction of the CPCs & saved me some
of the time I have spent; it's not as though there's something Top Secret about
them but the makers of Arnold have played their hands very close to their chests
and such information is not easy to come by. On the other hand, I must admit to
having enjoyed the effort of finding out some of the foibles and secrets of the
Anmstrad.In the next issue of PRINT-OUT, I'll be presenting an RSX (based on the
information presented here) that can be used to find occurrences of any part of
BASIC in a program.

34

TOKENS TABLES

00 End of Line marker

i
02
03
04

. (Statenent separator)
§ variable (Integer)

§ variable (5tring)

! variable (Real)

05 to O NOT USED

0B
o
0D
0E
OF
16
11
12
13
14
15
16
17
18
19

1A

i€

1D

1E

1F

2

2
2

23
P
3
2
2
X

iy
2
3B

DEFINT variable

DEFSTR variable

DEFREAL or undefined variable
0 {number}

1 {integer nutbers)

CO ~J O L e D B

g v
¥OT USED

10 to 255 integer nubers (the
value contained in the next byte)
256 to 32767 integer numbers (the
value contained in the next two
bytes)

81 (binary numbers; value is held
in the next two bytes}

& (hexadecimal numbers; valve
contained in the mext two bytes)
Prograr Line Nurber (converted to
the ‘address' before the start of
the line & contained in the next
two bytes; found when this part of
the program has already been run)
Prograe Line No. (still as a Line
¥o since this part of the program
has not yet been run; value cont-
ained in the next two bytes}
integers less than -32767 or
greater than 32767, and floating
point numbers (the value is held
in the next § bytes)

Space - used as separator between
parts of a statement

¥OT USED

Quotation mark ‘"' is used to de-
linit & string

Hash ‘#' for ¥indows and Strears
to 27 ¥OT USED

opening bracket ‘('

closing bracket ')’

to 2B NOT USED

comka ', ' used s a separator in
PRINT itens & Detween parameters
Hyphen '~' used with DEFINT etc
to 34 NOT USED

Semi-colon ';' is used as a sep-
arator for Print items etc

3C to 7B NOT USED
7C,00 | {synbol that precedes an RSX

cornand. The &00 byte is inserted
vhen the prograe is stored & will

0,

BERFEBI=sTES

not appear on listing the prograa}
to 7F NOT USED

MNTER

NTO

BORDER

CALL

(AT

CHAIN

CLEAR

CLs

EDIT
97 ELSE {the &01 byte is inserted
in the prograr when stored & will
not appear when listed)

ED

BT

B

ERASE

ERROR

EVERY

FOR

GOSUB or 60 SUB

8010 or 60 T0

Ir

INK

INPUT

KEY

LET

LINE

LIST

LOAD

LOCATE

HEHORY

HERGE

HID$ (Command, and Function but
vithout preceding &FF byte)

Of BREAK

O ERROR GOTO O/0N ERROR G0 T0 0
0N 50

OPENIN

GPENOUT

ORIGIN

B9
BA
BB
K
B
BE
BF

T
PAPER
PEN
PLOT
PLOTR
POKE
PRINT

01,00 ' (abbreviated version of REK;

IJIEZHpEENEEREEE

see note vith ELSE Re &01 byte)
RAD

RANDOKIZE

READ

RELEASE

REX (written in full)

RENUH

RESTORE

RESUME

L+

GRAPHICS *

MK ¢

TRAME ¢

CURSOR *

¥OT USED

ERL (Punction only; no preceding
EFF Dyte)

P (Command when used with DEF
Token and SPACE,and Function but
without preceding &FF byte)

SPC

STEP

SHAP

to E9 NOT USED

TAB

L S

\

WD

KD

R

YR

Yot

Punction prefix (see Table 2)

HEagdaEgaggsuazRag

The CPC 464 does not have certain of
the above Compands.They are indicat-
ed by a "**,por does it have certain
coebined commands, eq:- CLEAR INPUT,
GRAPHICS PEN, GRAPHICS PAPER.It does
however have HID§ as an undocusented
cornand. The 464 also does not have

the tvo functions DERR and COPYCHRS.
It also does not perform DECS, even

though 1t recognises the function.

Functions (preceded by &FF)
00 M5 45 mD

00 M5 |45 TIHE

02 M| 47 xp0s

03 CHR$ 48 YPOS

04 CINT 4 DER ¢
05 005 | 4k to70 NOT USED
06 CREAL | 71 BINg

0 EP |7 s 4
08 FIX 73 HEXS

09 FE |74 INSTR

OR INKEY |75 LEFTS

0B INP 7% WAY

6 T {77 KN

0p Joy 7% PoS

E LB |79 RIGHTS

OF 106 | 74 ROMND

10 10610 | 7B STRINGS
11 LOVERS | 7¢ TEST

12 PEX | 7D TESTR

13 REMAIN | 7E COPYCHRS *
14 56N T VP0S

15 SIN |80 to FF HOT USED
16 SPACES

17 %

18 SR

19 STR$

1k TR

1B Wr

IC UPPERS

0 W

1E to 3F NOT USED

40 BOF

4 IR

42 HINEM

43 INKEY$

4% P

i;; TIAD T o
+ 5102345678

INUIMISEIR

Smptte p
ooaa i ~y i!;s. ‘:"IV'ID'LIEAV"E,\',F

The only number system that the CPC can understand is binary and the reason
for this is that binary involves only ones and zeros which in turn are recorded
by the computer as being either 'on' or 'off'. Each digit in binary is called a
BIT and eight digits form a BYTE. Thus an 8-bit number has eight digits (each of
which can be either 1 or 0) and a 16-bit number has 16 digits.

The lowest value that a standard 8-bit number can hold is zero (when all of
the bits are set to zero - ie 20000000) and the highest value is 255 (when they
are all set to one - ie 11111111). Likewise a 16-bit number can have a value of
between 0 and 65535. The reasons for this were explained in the very first issue
of Print-Out.

However there's one very serious problem with this system; how can the CPC
store negative numbers? A lot of the time this problem can be avoided but there
are certain occasions when it is essential to to represent negative numbers and
so 'Two's Complement' or the 'signed number system' was devised.

Two's Complement still uses the binary counting system in exactly the same
way as before — it is just the way in which the digits are interpreted that has
changed. When using 2's Complement it's only possible to represent numbers from
-128 to 127 in an 8-bit binary number. To work out what the negative number is,
the following rules must be followed:

First, write out the positive number in binary form:—

eg. 105 = 01101001

Then change all of the zeros to ones and all the ones to zeros:—
eg. 10010110

And finally, add 1 to this. This gives the negative form:—
eg. -105 = 10010111

An important point to remember, when using this method, is that the binary
number must always contain eight digits. As proof that the system actually does
work, we will add -105 to +105 and see if the answer is correct (ie. zero)

-105 = 10010111
PLUS 105 = 21101001
EQUALS Q@ = 100000000

There's something not quite right about this answer until you remember that
an 8-bit, signed number must contain only eight digits. Therefore, the left-most
digit can be discarded thus giving 00000002 which is the correct result. Numbers
which have been produced using 2's complement are known as 'signed' numbers, and
those that have not are called 'unsigned' numbers.

36

When dealing with signed numbers, a quick way of telling if it is positive
or negative is to look at the left-most digit. If it is a 1, the number is neg-
ative, otherwise it is positive.

Here is a brief summary of the differences between signed and unsigned numbers:
8-BIT SIGNED NUMBERS can represent both positive and negative rumbers and
range from —128 (equals 10000000 in binary) to 127 (equals @1111111).
B8-BIT UNSIGNED NUMBERS can represent only positive numbers and range from
@ (equals 00000000 in binary) to 255 (egquals 11111111).
The same rules, methods of conversion and differences apply to 16-bit numbers;
the only change is that there must be 16 digits in the binary number and that
numbers from between —-32769 and 32767 can be represented when it is in signed
form, and between @ and 65535 in its unsigned form.

There's only one problem remaining; how does the computer know when a number
is signed or unsigned. The answer is that it depends on what type of number it
is expecting.For example, in last issue's Machine Code, there was a program to
draw lines using relative coordinates. Negative numbers had to be given to the
CPC and these were represented as 16-bit signed numbers. As the screen is only
640 pixels wide by 400 pixels high, the computer knows that we are unlikely to
want to draw to a place about 65000 pixels along, and so treats it as a signed
number, thus meaning about 400 pixels — far more sensible when using relative
coordinates. This might not seem much help, but do not worry — the CPC is very
good at getting it right {!!

As a conclusion to this article, here's a short program which asks for an
8-bit number (in either decimal,binary or hexadecimal form) and then works out
what the negative version of this number is. If you enter numbers greater than
255, it's likely to give results which you may not expect. Binary numbers must
be preceded by &X and hexadecimal numbers by the '&' sign. The program expects

4 N you to enter a positive

10 REM Two’s Complement Converter number & will then give
20 MODE 2:INPUT "Enter the number: ', num$ you the negative equiv-—-
40 a%=BINS (VAL (rnum$),8) alent. However, rather
30 PRINT "The binary rumber is “;a$ interesting and unusual
&0 FOR i=1 TO 8 results can be obtained
70 t$=MID$(a%,i, 1) by entering a negative
80 IF t#="1" THEN dig$="@" ELSE digs$="1" number to begin with.
0 ré=rs+digs$ -
100 NEXT i Whilst signed numbers &
110 re="&X"+rs$ 2's complement may seem
120 c=(VAL (r$)+1) complicated, all of the
130 com$=BIN$ (c,B8) difficulties can easily
140 PRINT "The complement is: "j;com$ be overcome by use of a

_ B, good assembler, such as

the one on this issue's
program tape or disc!!!

Offffers

Please make all cheques payable
to Print-Cut but any postal orders
should be made out to T J Defoe as
this saves the Post Office a great
deal of time and effort. Unless it
cannot be avoided, it is advisable
not to send cash through the post.
All orders should be sent to :— PRINT-OUT, Special Offers, 8 Maze Green Road,

Bishop's Stortford, Hertfordshire CM23 2PJ.

If you wish to order a copy of Issue Eight in advance you may do so by sending
a cheque / postal order for £1.10 (or 70p + an A4 SAE with a 28p stamp) to the
usual address. We hope to have it published by about the 30th November, and it
will be forwarded to you as soon as it is available. You may also order a copy
of the program cassette or disc in advance by sending the correct amount.

PROGRAM TAPES AND DISCS

We supply both program tapes and discs for all the issues and the prices given
below also include a booklet to explain how the programs work plus postage and
packing. Tapes and discs are available for Issues One, Two, Three, Four, Five,
Six and Seven. The cost for the program tapes are:—
a) A blark tape (at least 15 minutes) and 50p (p+p)
or Db) £1.00 (which also includes the price of a tape)
And the cost for a program disc is :—
a) A blank formatted disc and 50p (p+p)
or b) £3.00 (which alsc includes the cost of a MAXELL/AMSOFT disc) *

BACK COPIES

We still have a supply of Issues One, Two, Three, Four, Five and Six available
and the price is £1.10 which includes postage and packing. Alternatively, you
can order both a back issue and its corresponding tape or disc by sending:—
a) £1.75 — includes the tape, the required issue and postage and packing
b) £3.75 - includes the disc (genuine MAXELL/AMSOFT disc) * ard also the
required issue and postage

* When ordering using this particular method please allow about 21 days for
delivery as we must rely on outside suppliers for the discs.

* Please also note that one side of one CF-2 disc will hold all the programs
from upto six issues. Therefore, the cost is £3.00 for a disc plus one set
of programs and then 50p for each additional issue thereafter.

Send to: Print-Out, 8 Maze Green Road,

ﬂf'ers Bishop's Stortford, Herts.

NAME (block capitals please)t iiiinan..
A RE S i i e e ,

Please send me the following items :—

DESCRIPTION ISSUE NUMBER QUANTITY PRICE EACH PRICE

TOTAL PRICE
I enclose a cheque/postal order/cash* to the value of £....... Please make all
cheques payable to PRINT-OUT and make postal orders out to Thomas Defoe. Thank
YOu. (*delete as applicable)

SUBSCRIPTION

If you are interested in having a subscription to Print-Out you will be glad
to know that full details concerning subscriptions are printed on the next page.
We are running two types of subscription - half-yearly (three issues) and also
vearly (six issues) at the prices of £3.30 and £6.60 respectively.

ADVERTISING

You can place a SMALL AD of upto 40 words (including your name and address)
in this section of the magazine free of charge. If you wish to place a larger
advertisement in the magazine, please write to us for a full list of advertis-
ing rates.

39

Due to the many enquiries that we have received concerning subscriptions we
have now introduced a subscription service and it will be operating from Issue
Five. There are two forms of subscription :—

a) Three issues - approximately half a year

b) Six issues - approximately a full vear
Although we do try and produce one magazine every two months this is not always
possible due to other outside engagements and therefore exact release dates are
not given in the magazine. Because of this, we are unable to guarantee that six
issues will be produced in a year, or three issues in half a year. However, for
a year's subscription you will be sent six issues no matter when they are publ-
ished, and the same applies to a half-yearly subscription.

The prices for subscriptions to Print-Out are as follows :—

NO OF ISSUES UNITED KINGDOM EURCPE REST OF THE WORLD
SINGLE £1.10 £1.50 £2.00 / £2.50*
THREE ISSUES £3.30 £4.50 £6.00 / £7.50*

SIX ISSUES £6.60 £9.00 £12.00 / £15.00*

* The first price quoted is for 'Printed Paper Rate' but this does not have the
same level of security as a normal letter or parcel. The second price mentioned
is for normal rate and is sent in the same way as an ordinary letter or parcel.

For the United Kingdom there is an alternative price for ordering only a single
issue and this is:— 70p + a large A4 SAE (with 28p stamp). We try to despatch
all orders within a week of receiving them & all items are sent by SECOND CLASS
post, unless the extra money or stamps are sent with your order.

Send to :— PRINT-OUT, 8 Maze Green Road,
Bishop's Stortford, Herts.

Subscriptions

NAME (block capitals please)ouveuueonoeiunnoni .
ADDRESS ,

Please send me the next three/six* issues of Print-Out as soon as they are
published. I enclose a cheque/postal order* to the value of £....... and I
wish my subscription to start from Issue (* delete as applicable)

Please make all CHEQUES payable to FRINT-OUT but could you make postal orders
payable to T. J. Defoe (as this saves time and effort for the Post Office).

40

	Page 01
	Page 02
	Page 03
	Page 04
	Page 05
	Page 06
	Page 07
	Page 08
	Page 09
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

