MOSTEK.

Z80 MICROCOMPUTER SOFTWARE

Programming Guide

4 Rw]s,

Z80
PROGRAMMING
MANUAL

=
O
72
-
m
A
N
<o
QQ
v
X
O
m.
2
>
=
=
pra
G
s
b
=
o=
>
e

PROGRAMMING MANUAL

FOR

Z80 MICROCOMPUTER

SECTION
NUMBER

1

PARAGRAPH
NUMBER

TABLE OF CONTENTS

TITLE

RNON0
W=

|
=0 00~ oV

e
o

PEPRRREPYYYY
- O 00 ~N O U B W
~,LO

N
o
~ o

]
|

2-20
2-29
2-32
2-33
2-34
2-38
2-39
2-47
2-48
2-53
2-55
2-56
2-57
2-63
2-64
2-69
2-70
2-71
2-72
2-73
2-76

Z80 CPU ARCHITECTURE
INTRODUCTION

CPU REGISTERS

SPECIAL PURPOSE REGISTERS
Program Counter (PC)
Stack Pointer (SP)
Two Index Registers (IX & 1Y)
Interrupt Page Address Register (1)
Memory Refresh Register (R)
ACCUMULATOR AND FLAG REGISTERS
GENERAL PURPOSE REGISTERS
ARITHMETIC & LOGIC UNIT (ALD)

INSTRUCTION REGISTER AND CPU CONTROL

Z80 INSTRUCTION SET
INTRODUCTION

INSTRUCTION SET FEATURES

ADDRESSING MODES

Immediate Addressing

Immediate Extended Addressing

Modified Page Zero Addressing

Relative Addressing

Extended Addressing

Indexed Addressing

Register Addressing

Implied Addressing

Register Indirect Addressing

Bit Addressing

Stack Pointer Addressing

Subroutine Addressing

Subroutine Use of The Stack
780 STATUS INDICATORS (FLAGS)

Flag Register

Carry Flag (C)

Add/Subtract Flag (N)

Parity/Overflow Flag

Half Carry Flag (H)

Zero Flag (Z)

Sign Flag (s)
INTERRUPTS

Interrupt Types

Interrupt Enable - Disable
LOAD AND EXCHANGE INSTRUCTIONS
BLOCK TRANSFER AND SEARCH INSTRUCTIONS
ARITHMETIC AND LOGICAL INSTRUCTIONS
ROTATE AND SHIFT INSTRUCTIONS
BIT MANIPULATION INSTRUCTIONS
JUMP, CALL, AND RETURN
INPUT/OUTPUT INSTRUCTIONS
MISCELLANEOUS FEATURES

PAGE
NUMBER

l e
e

P e
1

e
b

NN b
| I |

NMDNNNNDNN
[L U

f
\IO\-L\J-\-L\-L\J-\(.BUJNNHHHHHP—‘J-\wwwwNNNl—‘

NNNll\?NNN

) NN'I\)N

i

= = \D \O 00 00 00
o

PEREYY
o
B O

TABLE OF CONTENTS (Continued)

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE ‘ NUMBER
2 2-77 Z80 ASSEMBLY LANGUAGE SYNTAX 2-16

: 2-78 - INTRODUCTION 2-16
2-87 LABELS ; 2-17

2-91 OPCODES 2-17

N 2-92 STANDARD OPERANDS ' 2-17

2-93 OPERAND NOTATION 2-18

2-95 COMMENTS 2-19

2-96 UPPER/LOWER CASE 2~-19

2-97 OPCODES ~ DETAILED DESCRIPTIONS 2-20

2-98 INTRODUCTION 2-20

APPENDIX A ALPHABETICAL LISTING OF Z80 OPCODES
APPENDIX B MOSTEK ASSEMBLER STANDARD PSEUDO-OPS

B B-1 INTRODUCTION B-1

APPENDIX C MOSTEK STANDARD Z80 OBJECT CODE FORMAT

c C-1 INTRODUCTION c-1
C-4 DATA RECORD FORMAT (TYPE 00) c-1
C-5 END-OF~FILE RECORD (TYPE Q1) c-1
C-6 INTERNAL SYMBOL RECORD (TYPE 02) c-2
c-7 EXTERNAL SYMBOL RECORD (TYPE 03) c-2
Cc-9 RELOCATING INFORMATION RECORD (TYPE 04) c-3
Cc-10 MODULE DEFINITION RECORD (TYPE 05) c-3

APPENDIX D REFERENCE TABLES

ii

LIST OF FIGURES

280 CPU Block Diagram

280 CPU Register Configuration

LIST OF TABLES

FIGURE NO. TITLE
1-1
i-2

TABLE NO. TITLE
2-1

Interrupt Enable/Disable Flip Flops

iii

PAGE NO.

1-1

1-2

PAGE NO.

2-14

ERRATA

The following changes apply to the Z80 PROGRAMMING MANUAL, MK78515, ISSUE DATE
MAY 1977.

1. For the RETI instruction (page 2-198), the statement which reads, "This
instruction also resets the IFF1 and IFF2 flip flops." is incorrect. It
should read, "This instruction has no effect on IFF1l and IFF2."

2. For block transfer/search instructions LDIR - LDDR - CPIR - and CPDR (pages
2-168, 2-164, 2-63, and 2-59 respectively) and for block input/output
instructions INIR - INDR - OTIR - and OTDR (pages 2-104, 2-100, 2-177, and
2-175 respectively), the statement which reads, "Also, interrupts will be
recognized after each data transfer/comparison”. should read, “Interrupts
will be recognized and two refresh cycles will be executed after each
data transfer/comparison.”

3. For subtract instructions SUB S - SBC A,s - SBC HL,ss - NEG - DEC m - CPDR -
CPD - CP s - CPI1 - and CPIR (pages 2-254, 2-234, 2-235, 2-170, 2-71, 2-60,
2-57, 2-56, 2-61, and 2-64 respectively), the statement under Condition Bits
Affected: "H: Set if no borrow from Bit _; reset otherwise" is incorrect.

It should read, "H: set if there is a borrow from Bit _; reset otherwise".

Also, for instructions SUB S - SBC A,s - SBC HL,ss - and CP s , the statement

which reads, C: Set if no borrow; reset otherwise " is incorrect. It
should read, "C: Set if there is a borrow, reset otherwise". For instruc-

tions CPDR - CPD - CPIR - and CPI , C is unaffected.

On page 2-8, paragraph 2-34, the statement which reads “For ADD instructions
that generate a carry and for SUBTRACT instructions that generate no borrow,
the Carry Flag will be set. The Carry Flag is reset by an ADD that does

not generate a carry and a SUBTRACT that generates a borrow. " is incorrect.
It should read, "For ADD instructions that generate a Carry and for SUBTRACT
instructions that generate a borrow, the Carry Flag will be set. The Carry
Flag is reset by an ADD that does not generate a carry and a SUBTRACT that
does not generate a borrow.".

Within the table of paragraph 2-47 on page 2-10, the statements in the
SUBTRACT column are incorrect and should read as follows: for H=1, "There is
a borrow from bit 4", and for H=0, "There is no borrow from bit 4".

PREFACE

This manual is designed to help the user program the Z80 micro-
computer in assembly language. It also serves as a standard
for the Z80 assembly language.

It is assumed that the user has a background in logic and some
experience with programming.

The manual consists mainly of a brief general description of the
280 CPU architecture from the programmer's point of view and a
detailed description of the Z80 instruction set. The description
of the instruction set includes a description of the set's main
features, specific information about assembly language syntax,
and detailed descriptions of each of the Z80 opcodes. The manual
also contains several appendices. Appendix A is an alphabetical
list of the Z80 opcodes. Appendix B provides details of the
Mostek assembler standard pseydo-ops. Appendix C describes the
Mostek standard Z80 object code format. Appendix D provides binary,
hexadecimal, and ASCII reference tables.

iv

SECTION I

280 CPU ARCHITECTURE

1-1. INTRODUCTION.

1-2. A block diagram of the internal architecture of the Z80 CPU

is shown in Figure 1-1. The diagram shows all of the major elements
in the CPU and it should be referred to throughout the following
description,

Figure 1-1. Z80 CPU Block Diagram

8-BIT
DATA BUS

<>

DATA BUS
CONTROL

>

INST.
INTERNAL DATABU ALU
<y st K s

INSTRUCTION
DECODE
T
cPU
cPJiND CONTROL cPU
SYSTEM cPU REGISTERS
CONTROL ::::>CONTROL

SIGNALS

<>

ADDRESS
CONTROL

5V GND & 16.BIT
ADDRESS BUS

1-4, The Z80 CPU contains 208 bits of R/W memory that are accessible

to the programmer. Figure 1-2 illustrates how this memory is configured
into eighteen 8-bit registers and four 16-bit registers. All Z80 re-
gisters are implemented using static RAM. The registers include a set

of special purpose registers, two sets of accumulator and flag registers,
and two sets of six general purpose registers which may be used individually
as 8-bit registers or in pairs as 16-bit registers.

1-3. CPU REGISTERS.

1-5. SPECIAL PURPOSE REGISTERS.

1-6. Program Counter (PC). The program counter holds the 16-bit address
of the current instruction being fetched from memory. The PC is auto-
matically incremented after its contents have been transferred to the
address lines. When a program jump occurs, the new value is automatically
placed in the PC, overriding the incrementer.

1-7. Stack Pointer (SP). The stack pointer holds the 16-bit address

of the current top of a stack located anywhere in external system RAM
memory. The external stack memory is organized as a last-in first-out
(LIFO) file. Data can be pushed onto the stack from specific CPU re-
gisters or popped off of the stack into specific CPU registers through
the execution of PUSH and POP instructions. The data popped from the
stack is always the last data pushed onto it. The stack allows simple
implementation of multiple level interrupts, unlimited subroutine nesting
and simplification of many types of data manipulation.

Figure 1-2. Z80 CPU Register Configuration

MAIN REG SET ALTERNATE REG SET \
7 - N/ -\ B
ACCUMULATOR 'FLAGS ACCUMULATOR FLAGS
A F A’ F
B c B’ c
GENERAL
D E D’ E PURPOSE
REGISTERS 1
H L W L
INTERRUPT MEMORY T
VECTOR REFRESH
! R

INDEX REGISTER IX

SPECIAL

PURPOSE
INDEX REGISTER 1Y f REGISTERS

STACK POINTER SP

PROGRAM COUNTER PC

1-8. Two Index Registers (IX & IY). The two independent index registers
hold a 16-bit base address that is used in indexed addressing modes. 1In
this mode, an index register is used as a base to point to a region in
memory from which data is to be stored or retrieved. An additional byte

is included in indexed instructions to specify a displacement from this
base. This displacement is specified as a two's complement signed integer.
This mode of addressing greatly simplifies many types of programs, especiall
where tables of data are used.

1-9, Interrupt Page Address Register (I). The Z80 CPU can be operated in
a mode where an indirect call to any memory location can be achieved in
response to an interrupt. The I Register is used for this purpose to
store the high order 8-bits of the indirect address while the interrupting
device provides the lower 8-bits of the address. This feature allows
interrupt routines to be dynamically located anywhere in memory with abso-
lute minimal access time to the routine.

1-3

1-10. Memory Refresh Register (R). The Z80 CPU contains a memory
refresh counter to enable dynamic memories to be used with the same

ease as static memories. This 7-bit register is automatically incre-
mented after each instruction fetch. The data in the refresh counter

is sent out on the lower portion of the address bus along with a re-
fresh control signal while the CPU is decoding and executing the fetched
instruction. This mode of refresh is totally transparent to the pro-
grammer and does not slow down the CPU operation. The programmer can
load the R register for testing purposes, but this register is normally
not used by the programmer.

1-11. ACCUMULATOR AND FLAG REGISTERS. The CPU includes two independent
8-bit accumulators and associated 8-bit flag registers. The accumulator
holds the results of 8-bit arithmetic or logical operations while the
flag register indicates specific conditions for 8 or 16-bit operatioms,
such as indicating whether or not the result of an operation is equal

to zero. The programmer selects the accumulator and flag pair that he
wishes to work with a single exchange instruction so that he may easily
work with either pair.

1-12. GCENERAL PURPOSE REGISTERS. There are two matched sets of general
purpose registers, each set containing six 8-bit registers that may be
used individually as 8-bit registers or as 16-bit register pairs by the
programmer. One set is called BC, DE and HL while the complementary set
is called BC', DE' and HL'. At any one time the programmer can select
either set of registers to work with through a single exchange command
for the entire set. In systems where fast interrupt response is required,
one set of general purpose registers and an accumulator/flag register

may be reserved for handling this very fast routine. Only a simple ex-
change command need be executed to go between the routines. This greatly
reduces interrupt service time by eliminating the requirement for saving
and retrieving register contents in the external stack during interrupt
or subroutine processing. These general purpose registers are used for

a wide range of applications by the programmer. They also simplify pro-
gramming, especially in ROM based systems where little external read/
write memory is available.

1-13. ARITHMETIC & LOGIC UNIT (ALU)

1-14. The 8-bit arithmetic and logical instructioms of the CPU are
executed in the ALU. Internally the ALU communicates with the registers
and the external data bus on the internal data bus. The type of functions
performed by the ALU include:

Add
Subtract

Logical AND

Logical OR

Logical EXCLUSIVE OR

Compare

Left or right shifts or rotates (arithmetic and logical)
Increment

Decrement

Set bit

Reset bit

Test bit

1-15. INSTRUCTION REGISTER AND CPU CONTROL

1-16. As each instruction is fetched from memory, it is placed in the
instruction register and decoded. The control section performs this
function and then generates and supplies all of the control signals
necessary to read or write data from or to the registers, controls

the ALU and provides all required external control signals.

SECTION 2

Z80 INSTRUCTION SET

2-1. INTRODUCTION

2-2. The Z80 instruction set of 158 instructions can best be described
by first discussing in general the main features. These features in-
clude its addressing modes; status and flags; interrupt modes; load and
exchange instructions; block transfer and search instructions; arithme-
tic and logical instructions; rotate and shift instructions; bit mani-
pulation instructions; jump, call, and return instructions; input/ocutput
instruction; and miscellaneous instructions. Included in the discussion
of the addressing modes are descriptions of subroutines and subroutine
use of the stack. Following this general description of the instruction
set, specific information about the syntax of the assembly language is
provided. Then each instruction is described in detail in alphabetical
order.

2-3. INSTRUCTION SET FEATURES

2-4. ADDRESSING MODES. Most of the Z80 instructions operate on data

stored in internal CPU registers, external memory or in the I/O ports.
Addressing refers to how the address of this data is generated in each
instruction. The following paragraphs gives a brief summary of the types

of addressing used in the Z80. Many instructions include more than one
operand (such as arithmetic instructions or loads). In these cases, two
types of addressing may be employed. For example, load can use immediate
addressing to specify the source and register indirect or indexed addressing
to specify the destination.

2-5. TImmediate Addressing. In this mode of addressing the byte following
the OP code in memory contains the actual operand.

OP Code } one or two bytes

Operand

d
7 d0

Examples of this type of instruction would be to load the accumulator
with a constant, where the constant is the byte immediately following
the OP code.

2-6. Immediate Extended Addressing. This mode is merely an extension
of immediate addressing in that the two bytes following the OP code
are the operand.

OP Code one or two bytes

Operand low order

Operand high order

Examples of this type of instruction would be to' load the HL register
pair (16-bit register) with 16 bits (2 bytes) of data.

2-7. Modified Page Zero Addressing. The Z80 has a special single
byte call instruction to any of 8 locations in page zero of memory.
This instruction (which is referred to as a restart) sets the PC to
an effective address in page zero. The value of this instruction

is that it allows a single byte to specify a complete 16~bit address
where commonly called subroutines are located, thus saving memory
space.

OP Code one byte

b b
7 0 . .
Effective address is (b5 b4 b3 OOO)2

2-8. Relative Addressing. Relative addressing uses one byte of data
following the OP code to specify a displacement from the existing pro-
gram to which a program jump can occur. This displacement is a signed
two's complement number that is added to the address of the OP code of
the following instruction.

OP Code Jump relative (one byte OP code)

Operand 8-bit two's complement displacement added
to Address (A+2)

The value of relative addressing is that it allows jumps to nearby loca-
tions while only requiring two bytes of memory space. For most programs,
relative jumps are by far the most prevalent type of jump due to the
proximity of related program segments. Thus, these instructions can
significantly reduce memory space requirements. The signed displacement
can range between +127 and -128 from A + 2. This allows for a total
displacement of +129 to -126 from the jump relative OP code address.
Another major advantage is that it allows for relocatable code.

2-3

2-9. Extended Addressing. Extended Addressing provides for two bytes

(16 bits) of address to be included in the instruction. This data can

be an address to which a program can jump or it can be an address where
an operand is located.

OP Code one or two
bytes

Low Order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from any location
in memory to any other location, or load and store data in any memory
location. When extended addressing is used to specify the source or
destination address of an operand, the notation (nn) will be used to
indicate the content of memory at nn, where nn is the 16-bit address
specified in the instruction. This means that the two bytes of address
nn are used as a pointer to a memory location. The use of the parentheses
always means that the value enclosed within them is used as a pointer to
a memory location. For example, (1200) refers to the contents of memory
at location 1200.

2-10. Indexed Addressing. In this type of addressing, the byte of data
following the OP code contains a displacement which is added to one of
the two index registers (the OP code specifies which index register is
used) to form a pointer to memory. The contents of the index register
are not altered by this operation.

OP Code two byte OP code

0P Code

Displacement| Operand added to index register to
form a pointer to memory.

2-11. An example of an indexed instruction would be to load the contents
of the memory location (Index Register + Displacement) into the accumulator.
The displacement is a signed two's complement number. Indexed addressing
greatly simplifies programs using tables of data since the index register
can point to the start of any table. Two index registers are provided
since very often operations require two or more tables. Indexed addressing
also allows for relocatable code.

2-12. The two index registers in the Z80 are referred to as IX and IY.
To indicate indexed addressing the notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the OP code. The
parentheses indicate that this value is used as a pointer to external
mMemory.

2-4

2-13. Register Addressing. Many of the Z80 OP codes contain bits of
information that specify which CPU register is to be used for an operation.
An example of register addressing would be to load the data in register B
into register C.

2-14. 1Implied Addressing. Implied addressing refers to operations where
the OP code automatically implies one or more CPU registers as containing
the operands. An example is the set of arithmetic operations where the
accumulator is always implied to be the destination of the results.

2-15. Register Indirect Addressing. This type of addressing specifies
a 16-bit CPU register pair (such as HL) to be used as a pointer to any
location in memory. This type of instruction is very powerful and it
is used in a wide range of applications.

OP Code one or two bytes

An example of this type of instruction would be to load the accumulator
with the data in the memory location pointed to by the HL register con-
tents. Indexed addressing is actually a form of register indirect
addressing except that a displacement is added with indexed addressing.
Register indirect addressing allows for very powerful but simple to
implement memory accesses. The block move and search commands in the
280 are extensions of this type of addressing where automatic register

-incrementing, decrementing and comparing has been added. The notation

for indicating register indirect addressing is to put parentheses around
the name of the register that is to be used as the pointer. For example,
the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer
to a memory location. Often register indirect addressing is used to
specify 16-bit operands. In this case, the register contents point to

the lower order portion of the operand while the register contents are
automatically incremented to obtain the upper portion of the operand.

2~16. Bit Addressing. The Z80 contains a large number of bit set,
reset and test instructions. These instructions allow any memory
location or CPU register to be specified for a bit operation through
one of three previous addressing modes (register, register indirect

and indexed) while three bits in the OP code specify which of the eight
bits is to be manipulated.

2-17. Stack Pointer Addressing. Memory locations may be addressed in
the 16-bit stack pointer register (SP). There are two stack operations
which may be performed:

1. PUSH, which puts data into a stack,

2. POP, which retrieves data from a stack.

2-18.

of a program.
to or from the stack.

For the

1.

3.

2-5

Note that the stack area must reside in read/write memory. The stack
pointer is initialized to the top location in the stack at the start
In a stack operation a 16-bit register pair is transferred

PUSH operation the contents of the register pair are
transferred to the stack:

The most significant 8-bits of data are stored at the
memory address less one than the contents of the stack

pointer.

The least significant 8 bits of data are stored at the
memory address less two than the contents of the stack

pointer.

The stack pointer is automatically decremented by two.

PUSH BC
stack before push Mem Addr stack after push
sp —P»| 00 01FF 00
00 O1FE 7A
00 01FD 40 |d—sp
00 01FC 00
B C B C
7A 40 7A 40
2-19. For the POP operation, 16 bits of data are taken from the

stack and placed in the 16-bit register pair:

1.

The second register of the pair (or the least significant
byte of the pair) is loaded from the memory address held

in the stack pointer.

The first register of the pair (or the most significant
byte of the pair) is loaded from the memory address one
greater than the address held in the stack pointer.

The stack pointer is automatically incremented by two.

2-6

POP HL
stack before POP stack after POP
00 01FF 00 |€¢—SP
7A O1FE 7A
SP -—-’ 40 01FD 40
00 O1FC 00
H L H L
FF FF 7A 40

2-20. Subroutine Addressing

2-21. Subroutines are blocks of instructions that can be called
during the execution of a sequence of instructions. Subroutines
can be called from main programs or from other subroutines. A
subroutine is entered by the CALL opcode as in:

CALL REWIND

2-22. Parameters such as those used by the macros are not used
with subroutines. When a call instruction is encountered during
execution of a program, the PC is changed to the first instruction
of the subroutine. The subsequent address of the invoking program
is pushed on the stack. Control will return to this point when

the subroutine is finished. The processor continues to execute the
subroutine until it encounters a RET (return) instruction. At this
point the return address is popped off the stack into the PC, and
the processor returns to the address of the instruction following
the CALL, to continue execution from that point.

2-23. Subroutines of any size can be invoked from programs or
other subroutines of any size, without restriction. Care must

be taken when nesting subroutines (subroutines within subroutines)
that pushes and pops remain balanced at each level. 1If the pro-
cessor encounters a RET with an un-popped push on the stack, the
PC will be set to a meaningless address rather than to the next
instruction following the CALL.

2-24. Tradeoffs must be considered between:
1. wusing a block of code repetitively in line, and
2. calling the block repetitively as a subroutine.
2-25. Program size can usually be saved by using the subroutine.
If the repetitive block contains N bytes and it is repeated on
M occasions in the program,
1. MxN bytes would be used in direct programming, while
2. 3M (for CALLS)
+ N (for the block)
+ 1 (for the RET)

= 3M+N+1 bytes would be required if using a subroutine.

2-26., For example, for a block of 20 bytes used 5 times, in-line

programming would require 100 bytes while a subroutine would require

36.

2-27. An added advantage of subroutines is that with careful
naming, program structures become clearer, easier to read and
easier to debug and maintain. Subroutines written for one purpose
can be employed elsewhere in other programs requiring the same
function.

2-28. Subroutines differ from Macros in several ways:

1. Subroutine code is assembled into an object
program only once although it may be called
many times. Macro code is assembled in line
every place the macro is used.

2. Registers and pointers required by a subroutine
must be set up before the CALL. No parameters
are used and no argument string can be issued.
Macros, through their use of parameters, can
modify the settings of registers on each occurrence.

2-29. Subroutine Use Of The Stack. When a call to a subroutine
is executed, the contents of the program counter are pushed onto
the stack automatically. Recall that the program counter contains
the next memory address to be executed. After the PC is pushed
onto the stack, the starting address of the subroutine is placed
into the PC and the branch to the subroutine is completed. At the
end of the subroutine, a return instruction pops the address off
the stack into the PC, and control is transferred to the memory
address after the call. These operations are automatic when the
CALL and RET instructions are executed.

2-30. Note that parameters can be passed to a subroutine because
the stack and stack pointer can be manipulated and updated by special
Z80 instructiomns.

2-31. The save type of operation as described for a subroutine also
occurs for external interrupts monitored by the CPU.

2-32, Z80 STATUS INDICATORS (FLAGS)

2-33. TFlag Register. The flag register (F and F') supplies informa-
tion to the user regarding the status of the Z80 at any given time.
The bit positions for each flag is shown below:

WHERE:

CARRY FLAG
ADD/SUBTRACT FLAG
PARITY/OVERFLOW FLAG
HALF~CARRY FLAG

ZERO FLAG

SIGN FLAG

= NOT USED

<
HouNnNEg2O0
[/

Each of the two Z80 Flag Registers contains 6 bits of status information
which are set or reset by CPU operations. (Bits 3 and 5 are not used.)
Four of these bits are testable (C,P/V,Z and S) for use with conditional
jump, call or return instructions. Two flags are not testable (H,N) and
are used for BCD arithmetic.

2-34. Carry Flag (C). The carry bit is set or reset depending

on the operation being performed. For ADD instructions that
generate a carry, and SUBTRACT instructions that generate a

borrow, the Carry Flag will be set. The Carry Flag is reset by an
ADD that does not generate a carry and a SUBTRACT that does not
generate a borrow. This saved carry facilitates software

routines for extended precision arithmetic.

Also, the DAA instruction will set the Carry Flag if the conditions
for making the decimal adjustment are met.

2-35. TFor instructions RLA, RRA, RL and RR , the carry bit is used
as a link between the LSB and MSB for any register or memory location.
During instructions RLCA, RLC s and SLA s, the carry contains the last
value shifted out of bit 7 of any register or memory location. During
instructions RRCA, RRC s, SRA s and SRL s the carry contains the last
value shifted out of bit 0 of any register or memory location.

2-36. For the logical instructions AND s, OR s and XOR s, the
carry will be reset.

2-37. The Carry Flag can also be set (SCF) and complemented (CCF).

2-38. Add/Subtract Flag (N). This flag is used by the decimal
adjust accumulator instruction (DAA) to distinguish between ADD
and SUBTRACT instructions. For all ADD instructions, N will be
set to an 0. For all SUBTRACT instructions, N will be set to

a l.

2-39. Parity/Overflow Flag. This flag is set to a particular
state depending on the operation being performed.

2-40. For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater than the
maximum possible number (+127) or is less than the minimum possible
number (-128). This overflow condition can be determined by examining
the sign bits of the operands.

2-41. For addition, operands with different signs will never cause
overflow. When adding operands with like signs and the result has
a different sign, the overflow flag is set. For example:

+120 = 0111 1000 ADDEND
+105 = 0110 1001 AUGEND
+225 = 1110 0001 (-95) SuM

The adding of the two numbers together has resulted in a number that
exceeds +127 and the two positive operands cause a negative number
(-95) which is incorrect. The overflow flag is therefore set.

2-42. For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For example:

+127 0111 1111 MINUEND
(-) -64 - 1100 0000 SUBTRAHEND
+191 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative, giving
an incorrect difference. Overflow is therefore set. Another method
for predicting an overflow is to observe the carry into and out of
the sign bit. If there is a carry in and no carry out, or 1if there
is no carry in and a carry out, then overflow has occurred.

2-43, This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The number of

1 bits in a byte are counted. If the total is odd, ODD parity

(P=0) is flagged. 1If the total is even, EVEN parity is flagged (P=1).

2-10

2-44. During search instructions CPI, CPIR, CPD, and CPDR and block
transfer instructions LDI, LDIR, LDD, and LDDR the P/V flag monitors
the state of the byte count register (BC). When decrementing, the
byte counter results in a zero value, the flag is reset to 0, otherwise
the flag is a 1.

2-45. During LD A,I and LD A,R instructions, the P/V flag will be
set with the contents of the interrupt enable flip-flop (IFF2) for
storage or testing.

2-46. When inputting a byte from an I/0 device, IN r,(C), the flag
will be adjusted to indicate the parity of the data.

2-47. Half Carry Flag (H). The Half Carry Flag (H) will be set or
reset depending on the carry and borrow status between bits 3 and 4
of an 8-bit arithmetic operation. This flag is used by the decimal
adjust accumulator instruction DAA to correct the result of a
packed BCD add or subtract operation. The H flag will be set (1) or
reset (0) according to the following table:

H ADD SUBTRACT

1 There is a carry from There is a borrow
Bit 3 to Bit 4 from bit 4

0 There is no carry from There is no borrow
Bit 3 to Bit 4 from bit 4

2-48. Zero Flag (Z). The Zero Flag (Z) is set or reset if the result
generated by the execution of certain instructions is a zero.

2-49. For 8-bit arithmetic and logical operations, the Z flag will
be set to a 1 if the resulting byte in the Accumulator is zero. If
the byte is not zero, the Z flag is reset to O .

2-50. For compare (search) instructions, the Z flag will be set to
a '"l' if a comparison is found between the value in the Accumulator
and the memory location pointed to by the contents of the register
pair HL.

2-51. When testing a bit in a register or memory location, the Z
flag will contain the complemented state of the indicated bit (see
Bit b,s).

2-52. When inputting or outputting a byte between a memory location

and an I/0 device (INI;IND;OUTI and OUTD), if the result of B-1 is zero,
the Z flag is set, otherwise it is reset. Also for byte inputs from

I1/0 devices using IN r,(C), the Z flag is set to indicate a zero byte input.

2-11

2-53. Sign Flag (S). The Sign Flag (S) stores the state of the most
significant bit of the Accumulator (Bit 7). When the Z80 performs
arithmetic operations on signed numbers, binary two's complement
notation is used to represent and process numeric information. A
positive number is identified by a 0 in bit 7. A negative number

is identified by a 1 . The binary equivalent of the magnitude of

a positive number is stored in bits 0 to 6 for a total range of from O
to 127. A negative number is represented by the two's complement of
the equivalent positive number. The total range for negative numbers
is from -1 to -128.

2-54. When inputting a byte from an I/O device to a register, IN r, ©),
the S flag will indicate either positive (S=0) or negative (S=1) data.
The state of the four testable flags is specified as follows:

FLAG ON CONDITION OFF CONDITION
Carry C NC

Zero Z NZ

Sign M (minus) P (plus)
Parity PE (even) PO (odd)

2-55. INTERRUPTS. The purpose of an interrupt is to allow peripheral
devices to suspend CPU operation in an orderly manner and force the CPU

to start a peripheral service routine. Usually this service routine is
involved with the exchange of data, or status and control information,
between the CPU and the peripheral. Once the service routine is completed,
the CPU returns to the operation from which it was interrupted.

2-56. Interrupt Types.
Non-Maskable

A non-maskable interrupt will be accepted at all times by the
CPU. When this occurs, the CPU ignores the next instruction that

it fetches and instead does a restart to location 0066H. Thus, it
behaves exactly as if it had received a restart instruction but,
it is to a location that is not one of the 8 software restart
locations. A restart is merely a call to a specific address in
page O of memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt
interrupt in any one of three possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode.
With this mode, the interrupting device can place any instruction
on the data bus and the CPU will execute it. Thus, the interrupting
device provides the next instruction to be executed instead of

2-12

the memory. Often this will be a restart instruction since

the interrupting device only needs to supply a single byte instruc-
tion. Alternatively, any other instruction such as a 3 byte

call to any location in memory could be executed.

The number of clock cycles necessary to execute this instruc-
tion is 2 more than the normal number for the instruction. This
occurs since the CPU automatically adds 2 wait states to an in-
terrupt response cycle to allow sufficient time to implement an
external daisy chain for priority control. After the application
of RESET the CPU will automatically enter interrupt Mode O.

Mode 1

When this mode has been selected by the programmer, the CPU
will respond to an interrupt by executing a restart to location
0038H. Thus the response is identical to that for a non-maskable
interrupt except that the call location is 0038H instead of 0066H.
Another difference is that the number of cycles required to complete
the restart instruction is 2 more than normal due to the two added
wait states.

Mode 2

This mode is the most powerful interrupt response mode. With
a single 8 bit byte from the user,an indirect call can be made to
any memory location.

With this mode the programmer maintains a table of 16-~bit
starting addresses for every interrupt service routine. This table
may be located anywhere in memory. When an interrupt is accepted, :
16-bit pointer must be formed to obtain the desired interrupt servi
routine starting address from the table. The upper 8 bits of this
pointer is formed from the contents of the I Register. The I Re-
gister must have been previously loaded with the desired value by
the programmer, i.e. LDI, A. Note that a CPU reset clears the I
register so that it is initialized to zero. The lower eight bits
of the pointer must be supplied by the interrupting device. Actuall
only 7 bits are required from the interrupting device as the least
significant bit must be a zero. This is required since the pointer
is used to get two adjacent bytes to form a complete 16-bit service
routine starting address,and the addresses must always start in ever
locations.

desired starting address

Interrupt pointed to by:

Service

Routine low order I REG 7 BITS FROM
Starting high order CONTENTS PERIPHERAL 0
Address

Table

2-13

The first byte in the table is the least significant (low order)
portion of the address. The programmer must obviously fill this
table in with the desired addresses before any interrupts are

to be accepted.

Note that this table can be changed at any time by the pro-
grammer (if it is stored in Read/Write Memory) to allow different
peripherals to be serviced by different service routines.

Once the interrupting device supplies the lower portion of
the pointer, the CPU automatically pushes the program counter
onto the stack, obtains the starting address from the table and
does a jump to this address. This mode of response requires 19
clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain
the jump address.)

Note that the Z80 peripheral devices all include a daisy
chain priority interrupt structure that automatically supplies
the programmed vector to the CPU during interrupt acknowledge.
Refer to the Z80 PIO, Z80 SIO and Z80 CTC manuals for details.

2-57. Interrupt Enable/Disable.

2-58. The Z80 CPU has two interrupt inputs, a software maskable interrupt
and a non-maskable interrupt. The non-maskable interrupt (NMI) can not

be disabled by the programmer and it will be accepted whenever a peripheral
device requests it. This interrupt is generally reserved for very important
functions that must be serviced whenever they occur, such as an impending
power failure. The maskable interrupt (INT) can be selectively enabled

or disabled by the programmer. This allows the programmer to disable the
interrupt during periods where his program has timing constraints that do
not allow it to be interrupted. In the Z80 CPU there are enable flip flops
(called IFF7) and IFFp that are set or reset by the programmer using the Enabl
Interrupt (EI) and Disable Interrupt (DI) instructions. When the IFF] is
reset, an interrupt can not be accepted by the CPU. Table 2-1 summarizes
the effect of the different instructions on the two enable flip flops.

2-59, There are two enable flip flops, called IFF1 and IFFZ.

IFF IFF
1 2
Actually disables interrupts Temporary storage location
from being accepted. for IFF,.

The state of IFF; is used to actually inhibit interrupts while IFFy is
used as a temporary storage location for IFFl. The purpose of storing
the IFF1 will be subsequently explained.

2-14

2-60. A reset to the CPU will force both IFF1 and IFF, to the reset
state so that interrupts are disabled. They can then be enabled by

an EI instruction at any time by the programmer. When an EI instruction
is executed, any pending interrupt request will not be accepted until
after the instruction following EI has been executed. This single in-
struction delay is necessary for cases when the following instruction
is a return instruction and interrupts must not be allowed until the
return has been completed. The EI instruction sets both IFF) and IFF)
to the enable state. When an interrupt is accepted by the CPU, both
IFF) and IFF, are automatically reset, inhibiting further interrupts
until the programmer wishes to issue a new EI instruction. Note that
for all of the previous cases, IFF1 and IFF, are always equal.

2-61. The purpose of IFF, is to save the status of IFF; when a non-
maskable interrupt occurs. When a non-maskable interrupt is accepted,

IFF, is reset to prevent further interrupts until reenabled by the pro-
grammer. Thus, after a non-maskable interrupt has been accepted, maskable
interrupts are disabled but the previous state of IFF, has been saved

so that the complete state of the CPU just prior to the non-maskable
interrupt can be restored at any time. When a Load Register A with Register
(LD A,I) instruction or a Load Register A with Register R (LD A,R) in-
struction is executed, the state of IFF, is copied into the parity flag
where it can be tested or stored.

2-62. A second method of restoring the status of IFF, is thru the
execution of a Return from Non-Maskable Interrupt (RE%N) instruction.

Since this instruction indicates that the non-maskable interrupt service
routine is complete, the contents of IFF2 are now copied back into IFFqp,

so that the status of IFF1 just prior to the acceptance of the non-maskable
interrupt will be restored automatically.

Table 2-1. Interrupt Enable/Disable Flip Flops

Action IFF1 IFF2
CPU Reset 0 0
DI 0 0
EI 1 1
LD A,I . . IFF2 -~ Parity flag
LD A,R . . 1FF, » Parity flag
Accept NMI 0 ‘
RETN IFF . I

2 FF, > IFF,
RETI . .

Accept INT : 0 0 "." indicates no change

2-15

2-63. LOAD AND EXCHANGE INSTRUCTIONS. These instructions move data
to and from registers, such as load B from D, load C from memory, store
HL into memory, push IX into stack, and exchange AF with A'F'.

2-64. BLOCK TRANSFER AND SEARCH INSTRUCTIONS. This group includes
several useful instructions.

2-65. The load and increment instruction moves one byte of data from
memory pointed to by HL to another memory location pointed to by DE
Both register pairs are automatically incremented and the byte counter
(BC) is decremented. This instruction is extremely valuable in moving
blocks of data.

2-66. Another instruction repeats the load and increment instruction
automatically until the byte counter reaches zero. Thus, in one in-
struction, a block of data, up to 64K bytes in length, can be moved
anywhere in memory.

2-67. The compare and increment instruction, compares the contents

of the accumulator with that of memory pointed to by HL. The appropriate
flag bits are set, HL is automatically incremented, and the byte counter
is decremented.

2-68. The compare, increment, and repeat instruction repeats
the above instruction until either a match is found or the counter reaches
zero.

2-69. ARITHMETIC AND LOGICAL INSTRUCTIONS. These instructions include
all the adds and subtracts, increments, compares, exclusive-ors, etc.
The Z80 features the indexed addressing mode and double precision add
with carry and subtract with carry.

2-70. ROTATE AND SHIFT INSTRUCTIONS. The Z80 includes four rotate
accumulator instructions and logical shifts and arithmetic shifts. There
are also two rotate digit instructions which are applicable to BCD arith-
metic. With these a digit (4 bits) can be rotated with two digits in

a memory location.

2-71. BIT MANIPULATION INSTRUCTIONS. There are three basic bit mani-
pulation operations; test bit, set bit, and reset bit.

2-72. JUMP, CALL, AND RETURN. The Z80 has numerous conditional and
unconditional jumps, calls, and returns. In addition, the Z80 has
several jump relative instructions using relative addressing.

2-73. INPUT/OUTPUT INSTRUCTIONS.

2-74. The 280 allows for a standard common I/0 routine for all devices
by including IO instructions that use the C register to contain the IO
device address. Therefore one I0 routine can be used with the device
address placed in register C before entering the routine. Also instead
of being restricted to inputting or outputting to and from the accumulator
only, any register can be used.

2-16

2-75. The 280 has eight block transfer IQO instructions which are
similar to the memory block tramsfer instructions. HL is the memory
pointer, C is the device pointer, and B is the byte counter. There-
fore, an I0 block transfer can handle up to 256 bytes. Essentially
these commands are a processor implementation of direct memory access
(DMA), invoke by a software sequence.

2-76. MISCELLANEOUS FEATURES. The Z80 instruction set also includes
a no-operation instruction.

2-77. 7280 ASSEMBLY LANGUAGE SYNTAX.

2-78. INTRODUCTION.

2-79. The assembly language of the Z80 is designed to minimize the
number of different opcodes corresponding to the set of basic machine
operations and to provide for a consistent description of instruction
operands. The nomenclature has been defined with special emphasis on
mnemonic value and readability.

2-80. An assembly language program, or source program, consists of
statements in a sequence which defines the user's program. The statements
consist of:

1. 1labels,

2. opcodes or pseudo-ops
3. operaunds, and

4, comments.

2-81. Certain rules define how assembly language statements are to
appear. A statement has four separate and distinct parts or fields.

LABEL OPCODE OPERANDS COMMENT
ex: LOOP: 1D HL,VALUE ;GET VALUE

2-82. The first field is the LABEL field. The label is a name used
to reference the program counter, another label, or a constant.

2-83. The second field is the OPCODE field. It specifies the operation
to be performed. There are 74 Z80 opcodes and several pseudo-ops that
are standard for the Z80. The standard pseudo-ops are described in
Appendix B,

2-84. The third field is the OPERAND field. It provides address or data
information for the OPCODE field. There may be zero or more operands
in the operand field depending on the requirements of the opcode field.

2-17

2-85. The fourth field is the COMMENT field. It is used to document
a program. The comment field may appear in a statement without the
other fields. Comments are ignored by an assembler, but they are
printed in the assembly listing.

2-86. FEach of the above parts, or field, must be separated from
each other by one or more commas or blanks. If more than one operand
appears, they must be separated from each other by one or more commas.

2-87. LABELS

2-88. A label is a symbol representing up to 16 bits of information
and is used to specify an address or data. By using labels effectively,
the user can write assembly language programs more rapidly and make
fewer errors.

2-89. A label is composed of one or more characters. If more than 6
characters are used for the label, only the first 6 will be recognized
by a standard assembler. The first character of a label must not be

a number (0-9) or a restricted character. The remaining characters
cannot include a restricted character. The restricted characters are:

Control characters (0-2FH,7FH)
Space

() +, -

Note that a single dollar sign ($) is reserved to represent the program
counter.

2-90. A label can start in any column if followed by a colon (:). It
does not require a colon if started in column one.

2-91. OPCODES. The bulk of this manual describes the Z80 opcodes. Op-
codes are 2 to 4 characters long and describe Z80 instructions.

2-92. STANDARD OPERANDS. There may be zero or more operands present
in a statement depending upon the opcode used. An operand which appears
in a statement may take one of the following forms.

1. A generic operand, such as the letter A, which stands for the
accumulator.

2. A constant. The constant must be in the range 0 through OFFFFH.
It can be in the following forms:

Decimal - Any number may be denoted as decimal by following it
with the letter 'D'. E.g., 35, 249D. However, the
assembler will consider any number which is undesignated
as decimal.

2-18

Hexadecimal - must begin with a number (0-9) and end with the
letter 'H'. E.g., OAF1H

Octal -~ must end with the letter 'Q' or '0'. E.g., 377Q, 2770
Binary - must end with the letter 'B'. E.g., 0110111B

ASCII - letters enclosed in quote marks will be converted to
their ASCII equivalent value. E.g., 'A' = 41H

3. A label which appears elsewhere in the program. Note that labels
cannot be defined by labels which have not yet appeared in the user
program for 2-pass assemblers.
E.g.:

L EQU H

HEQU I

I EQU 7 IS NOT ALLOWED.

I EQU 7
H EQU I
L EQU H IS ALLOWED.

4. The symbol $ is used to represent the value of the program counter
of the current instruction.

5. Expressions. Expression evaluation capability is a function of

the features of a particular assembler. In general, arithmetic and logi-
cal expressions are allowed, and parentheses may be used to assure correct
evaluation.

2-93., OPERAND NOTATION. The following notation is used in the assembly
language:

1) r specifies any one of the following registers: A,B,C,D,E,H,L.

2) (HL) specifies the contents of memory at the location addressed
by the contents of the register pair HL.

3) n specifies a one-byte expression in the range (0 to 255). nn
specifies a two-byte expression in the range (0 to 65535).

4) d specifies a one-byte expression in the range (-128,127).

5) (nn) specifies the contents of memory at the location addressed
by the two-byte expression nn.

Note

Note

2-19

6) b specifies an expression in the range (0,7).
7) e specifies a one-byte expression in the range (-126,129).

8) cc specifies the state of the flags for conditional JR and JP
instructions.

9) qq specifies any one of the register pairs BC, DE, HL or AF.

10) ss specifies any one of the following register pairs: BC,
DE, HL, SP.

11) pp specifies any one of the following register pairs: BC,
DE, IX, SP.

12) rr specifies any one of the following register pairs: BC,
DE, 1Y, SP.

13) s specifies any of r, n, (HL, (IX+d), (IY+d).

14) dd specifies any one of the following register pairs: BC,
DE, HL, SP.

15) m specifies any of r, (HL), (IX+d), (IY+d).
The enclosing of an expression wholly in parentheses indicates a
memory address. The contents of the memory address equivalent to the
expression value will be used as the operand value.
2-94. In doing relative addressing, the current value of the program
counter must be subtracted from the label if a branch is to be made to
that label address. E.g.:

JR NC,LOOP-$

«e.will jump relative to 'LOOP'.

2-95. COMMENTS. A comment is defined as any string of characters
following a semicolon. Comments are ignored by an assembler, but

they are printed on the assembly listing. Comments can begin in any
column:

3 this is a comment
H
2-96. UPPER/LOWER CASE.

The MOSTEK assembler and text editor allow the use of lower case letters
for labels and comments.

2-20

2-97. OPCODES - DETAILED DESCRIPTIONS.

2-98. INTRODUCTION. This section describes each Z80 opcode (instruction)
in detail. The opcodes are presented in alphabetical order, one per

page. Each instruction is introduced by its mnemonic opcode and symbolic
operands. Then follows a brief description, operation, valid operand
combinations, machine code, detailed description, condition bits affected,
and one or more examples.

Operation. A<« A+s+CY

Format:
Opcode

ADC

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as
defined for the analogous ADD instruction,.
various possible opcode-operand combinations are

Operands

A,s

assembled as follows in the object code:

ADC A,r

ADC A,n

ADC A, (HL)

ADC A, (IX+d)

ADC A, (IY+d)

*r identifies registers B,C,D,E,H,L or A assembled as

1 i) i I T T
1 0 0 0 1 <+—r*x—
| A | 1 1 1 1
[} i i] i v
11 001 1 10
| 1 { n L 1 I
T ¥ | i i J T
— n -
i { 5 L | | }

i | i] L i]
10001110
[! { 18 | § !

1 1 i i 1 ¥ i
11011 1¢0 070
} 1 1 1 ! . L
i i o i] 1 i
106 0 0 1 1 10
1 i 1 1 i l 1
) i | T 1 i T

- d
J { 1 L 1 ! 1
¥ | i T i i 1
111111 0 1
! ! 1 1 1 |
1 i i i i] \
100 0 1 1 10
L i { | i I i
1 i i T i |]
d

follows in the object code field above:

These

CE

8E

0D

FO

8k

Register r

000
001
010
011
100
101
111

U EMmUOOw

Description:

The s operand, along with the Carry Flag ("C" in the F
regiscter) is added to the contents of the Accumulator,
and the result is stored in the Accumulator.

INSTRUCTION M CYCLES T STATES

ADC A,r 1 4

ADC A,n 2 7(4,3)

ADC A, (HL) 2 7(4,3)

ADC A, (I1X+d) 5 19(4,46,3,5,3)
ADC A, (IY+d) 5 19¢(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from

Bit 3; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Reset
C: Set 1if carry from
Bit 7; reset otherwise

Example:

1f the Accumulator contains 16H, the Carry Flag is set,
the HL register pair contains 6666H, and address 6666H
contains 10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H.

\¥]
U

23

ADC HL, ss

Operation: HL<HL+ss+CY

Format:
Opcode Operands
ADC HL,ss
' i I 3 L
1 0 1 1 0 1 ED
H i i I 1 H
Y I SR M R
0 s 1 0 1 0
I i L ! i I\

Description:

The contents of register pair ss (any of register pairs
BC,DE,HL or SP) are added with the Carry Flag (C flag in

the F register)
the result is stored in HL.

to the contents of register pair HL, and

Operand ss is specified as

follows in the assembled object code.

Register

Pair

BC
DE
HL
SP

M CYCLES: 4 T STATES:

Condition Bits

58S

15(4,4,4,3)

Affected:

Set if result is negative;
reset otherwise

Set 1f result 1is zero;
reset otherwise

Set if carry out of

Bit 1ll; reset otherwise
Set. 1€ overflow;

reset otherwise

Reset

Set if carry from

Bit 15; reset otherwise

Example:

If the register pair BC contains 2222H, register pair HL
contains 5437H and the Carry Flag is set, after the
execution of

ADC HL,BC

the contents of HL will be 765AH.

2-25

ADD A, (HL)

Operation: A<« A+(HL)
Format:
Opcode Operands

ADD A, (HL)

T T T T
1 0 0 0O 1 1 0 86

L L 1) 1 1 i

Description:

The byte at the memory address specified by the contents
of the HL register pair is added to the contents of the

Accumulator and the result is stored in the Accumulator.
M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected:

S: Set i1f result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

P/V: Set if overflow;

reset otherwise

N: Reset

C: Set i1f carry from

Bit 7; reset otherwise
Example:
If the contents of the Accumulator are AOH, and the
content of the register pair HL is 23231, and memory
location 2323H contains byte 08H, after the execution of

ADD A, (HL)

the Accumulator will contain AS8H.

2-26

ADD A, (IX+d)

Operation: A<+« A+ (IX+d)

Format:
Opcode Operands
ADD A, (IX+d)
| I L) |) | 1
11011101 Go
1 | 1 A Il i L

Description:

The contents of the Index Register (register pair IX) is
added to a displacement d to point to an address in
memory. The contents of this address is then added to
the contents of the Accumulator and the result is stored
in the Accumulator,)

M GCYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

Hs Set if carry from
Bit 3; reset otherwise

P/V: Set if overflow;

reset otherwise

N: Reset

C: Set if carry from

Bit 7; reset otherwise
Example:

If the Accumulator contents are l1H, the Index Register
IX contains 1000, and if the content of memoxry location

2-27

10050 is 22H, after the execution of
ADD A, (IX+5H)

the contents of the Accumulator will be 33H.

ADD A, (IY+d)

Operation

Format:

A < A+{lY+d)
Opcode Operands
ADD A, (IY+d)
| t 1 []] i
111 111 0 1 FD

Description:

The contents of the Index Register (register pair 1Y) is
added to a displacement d to point to an address in
memory. The contents of this address is then added to
the contents of the Accumulator and the result is stored
in the Accumulator.,

M CYCLES:

5

T STATES:

Condition Bits Affected:

Example:

If the Accumulator contents are 11H,
pair IY contains 1000H,

19(4,4,3,5,3)

Set if result is negative;

reset otherwise

Set if result is zero;

reset otherwise
Set if carry from
Bit 3;
Set if overflow;
reset otherwise
Reset

reset otherwise

Set if carry from bit 7;

reset otherwise

the Index Register

and if the content of memory

location 1005H is 22H, after the execution of
ADD A,{(IY+5H)

the contents of the Accumulator will be 33H.

ADD A, n

Operation: A< A+n

Format.
Opcode Operands
ADD A,n

Cé

Description:

The integer n is added to the contents of the
Accumulator and the results are stored in the
Accumulator,
M CYCLES: 2

T STATES: 7(4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

P/V: Set if overflow;

reset otherwise

N: Reset

C: Set i1f carry from
Bit 7; reset otherwise

Example:

1If the contents of the Accumulator are 23H, after

execution of
ADD A,33H

the contents of the Accumulator will be 56H.

the

2-31

ADDA,r

Operation: A<«A+r

ottt

Format:
Opcode Operands
ADD A,r

T T T T 1
1 00 0 0=—r—
1], 1 1 1 1 i

Description:

The contents of register r are added to the contents
the Accumulator, and the result is stored in the
Accumulator. The symbol r identifies the registers
A,B,C,D,E,H or L assembled as follows in the object
code:

Register T
A 111
B 000
c 001
D 010
E 011
H 100
L 101

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zexo;
reset otherwise

H: Set if carry fron

Bit 3; reset otherwise
P/V: Set if overflow;
reset otherwisc
N Reset
C: Set if carry £from
3it 7; reset otherwise

of

Example:

If the contents of the Accumulator are 44H, and the
contents of register C'are 1lH, after the execution of

ADD A,C

the contents of the Accumulator will be 55H.

2-33

ADD HL, ss

Operation: HL<« HL+ss

Format:
Opcode Operands

ADD HL,ss

| 1] i 1 i i

00 s s 100 1
ot .. 1< 41 1

Description:

The contents of register pair ss (any of register pairs
BC _DE,HL or SP, are added to the contents of register
pair HL and the result is stored in HL. Operand ss is
specified as follows in the assembled object code.

Register

Pair ss
BC 00
DE 01
HL 10
SP 11

M CYCLES: 3 T STATES: 11(4,4,3)

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of
Bit 11; reset otherwise
P/V: llot affected
N: Reset
C: Set if carry from

Bit 15; reset otherwise

2-34

Example:

If register pair HL contains the integer 4242H and
register pair DE contains 1111H, after the execution of

ADD HL,DE

the HL register pair will contain 5353H,

Operation: IX<«IX+pp

Operands

IX,pp

Format:
Opcode
ADD
T
1 1

0 1 110 1| DD

0'0

H

} | i i |
p p 1 0 0 1
I 1 ! 1 g

L

H

Description:

The contents of register pair pp {(any of register pairs
BC,DE,IX or SP) are added to the contents of the Index

Register IX, and the results are stored in IX, Operand
Pp is specified as follows in the assembled object code,

Register

Pair _PP_
BC 00
DE Gl
IX 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected:

S:
Z:
H:

P/V:
N:
G:

Not affected

Not affected

Set if carry out of

Bit 1ll; reset otherwise
Not affected

Reset

Set if carry from

Bit 15; reset otherwisec

Example:

If the contents of Index Register IX are 333H and the
contents of register pair BC are 5555i, after the
execution of

ADD IX,BC

the contents of IX will be 8888H,

2-37

ADD 1Y, rr

Operation: Y« IiY+rr
Format:
Opcode Operands
ADD IY,rr
T T T .7 _ T 1
11 1 1 1 1 0 1 FO
{ 1 I 1 1 1 1
T T T 7T 1
0O 0r r 1 001
L 1 L 1) 1 1

Description:

The contents of register pair rr (any of register pairs
BC,DE, 1Y or SP) are added to the contents of Index

Register 1Y, and the
is specified as fcllo

result is stored in IY, Operand rr
ws in the assecmbled object code.

Register
Pair Tr
BC 00
DF 01l
1Y 10
SP 11
M CYCLLS: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected:

S: Mot
Z: llot
s Set

Bit

P/V: Not
N: Rese

G Set

Bit

affected

affected

if carry out of

l11; reset otherwise
affected

t

if carry from

15; reset otherwise

2-38

Example:

If the contents of Index Register IY are 333H and the
contents of register pair BC are 555H, after the
execution of

ADD IY,BC

the contents of 1Y will be 8888H.

AND s

Operation: A< AAs
Format:
Opcode Operands
AND s
The s operand is any of r,n,(HL),(IX+d) or (LY+d), as
defined for the analogous ADD instructions. These

various possible opcode-operand combinations are
assembled as follows in the object code:

I] H] i]]
AND ¢ 1 01 0 Q=~—r—
i i L L ! 1 1
i 1 i 1]] I
AND n 1 1100 1 10 Ed
L i 1 L [l) |
i] 1 1 i | 1
-t n —
1 { 1 ! 1 1 1
]] i] 1 1 i
AND (HL) 1 01 00110 A6
i } 1 L L 1 1
i [i]] i 3
AND (IX+d) 11 0 1 1 1 01 DD

AND (IY+d) 11111101 FD

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

2-40

Register r

000
001
010
011
100
101
111

PHEIEEMUOW

Description:

A logical AND operation, bit oy bit, is performed
between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in
the Accumulator,

INSTRUCTION M CYCLES T STATES
AND r 1 4

AND n 2 7(4,3)

AND (iL) 2 7(4,3)

AND (IX+d) 5 19(4,4,3,5,3)
AND (IX+d) 5 19(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set

P/V: Set if parity even;

reset otherwise

N: Reset

C: Reset

Example:
If the B register contains 7BH (01111011) and the
Accunulator contains C3H (11000Q011) after the execution
of

AND B

the Accumulator will contain 43H (010C0011).

2-41

BIT b, (HL)

——

Operation: Z<« (HL)y

Format:
Opcode Operands
BIT b, (HL)

- N T
11001 011 CB

Description:

After the execution of this instruction, the 2 flag in
the F register will contain the complement of the
indicated bit within the contents of the HL register
pair. Operand b is specified as follows in the
assembled object code:

Bit Tested b

000
001
010
011
100
101
110
111

~NounpsWwNn—- O

M CYCLES: 3 T STATES: 12(4,4,4)

Condition Bits Affected:

S: Unknown
Z: Set.if specified Bit is
0; reset otherwise
H: Set
P/V: Unknown
Hs Reset

C: Not affected

2-42

Example:

If the HL register pair contains 4444H, and bit 4 in the
menory location 444H contains 1, after the execution of

BIT 4, (HL)
the Z flag in the F register will contain 0, and bit 4

in memory location 4444H will still contain 1., (Bit O in
memory location 4444H is the least significant bit.)

2-43

BIT b, (IX+d)

Operation: Z < (IX+d),

Format:
Opcode Operands

BIT b, (IX+d)

11011101 DD

Description:

After the execution of this instruction, the Z flag in
the F register will contain the complement of the
indicated bit within the contents of the memory location
pointed to by the sum of the contents register pair IX
(Index Register IX) and the two’s complement
displacement integer d. Operand b is specified as
follows in the assembled object code.

Bit Tested b
0 000
1 001
2 010
3 0l1
4 100
5 101
6 110
7 111

4 CYCLES: 3 T STATES: 20(4,4,3,5,4)

2-bh

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit 1is
0; reset otherwise
H: Set
P/V: Unknown
N: Reset

C: Not affected
Example:
If the contents of Index Register IX are 2000H, and bit

6 in memory location 2004H contains 1, after the
execution of

BIT 6, (IX+4H)
the 2 flag in the F register will contain 0, and bit 6

in memory location 2004H will still contain 1. (Bit O
in memory location 2004H is the least significant bit.)

2-45

BIT b, (IY+d)

ot

Operation: Z <« (IY+dly
Format:
Opcode Operands

BIT b, (IY+d)

171111101 FD

1100 1 011 CB

Description:

After the execution of this instruction, the Z flag in
the F register will contain the complement of the
indicated bit within the contents of the memory location
pointed to by the sum of the contents of register pair
IY (Index Register 1Y) and the two s complement
displacement integer d. Operand b is specified as
follows in the assembled object code:

Bit Tested b

000
001
010
oLl
100
101
110
111

N oWwm WO

M CYCLLS: 3 T STATES: 20(4,4,3,5,4)

2-46

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is
0; reset otherwise
H: Set
P/V: Unknown
N: Reset

C: Not affected
Example:
If the contents of Index Register are 2000H, and bit 6
in memory location 2004H contains 1, after the execution
of
BIT 6, (IY+4H)
the Z flag in the F register sill econtain 0, and bit 6

in memory location 2004H will still contain 1., (Bit O
in memory location 2004H is the least significant bit,)

2-47

BIT b, r

Operation: YAS rb

‘Format:
Opcode Operands
BIT b, r

{ 1 \ | ! i M
110010 11 cB
| 1 i L i] L

1 1 ' v 1 T ¥

0 1 « b -~
1 1 i []

“«~ T°r >
) I I |

Description:

After the execution of this instruction, the Z flag in the F register
will contain the complement of the indicated bit within the contents
of the r - register. Operands b and r are specified as follows in
the assembled object code:

Bit Tested b register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111
M CYCLES: 2 T STATES: 8 (4,4)
Condition Bits Affected:
S: Unknown
Z: Set if specified Bit is
0; reset otherwise
H: Set
P/V: Unknown
H: Reset
C: Not affected

Example:
If bit 4 in the B-register contains 1, after the execution of

BIT 4, B

the Z flag in the F register will contain 0, and bit 4 in the B
register will still contain 1. (Bit O in the B-register is the
least significant bit.)

2-49

CALL cc, nn

Operation: IF cc TRUE: (SP-1) «PCy
(SP-2) « PCL, PC <« mn

Format:
Opcode Operands
CALL cc,nn
T T T 11
1 1=~—cc—1 O
1 I\ ! L 1] L
S N LA
—~— n
! i | " ! 1
\ 1 | 1 1 i \
- n >
1 1] i 1 i 1
Note: The first of the two n operands in the assembled

object code above is the least significant byte of the
two-byte memory address.

Description:

If condition cc is true, this instruction pushes the
current contents of the Program Counter (PC) onto the
top of the external memory stack, then loads the
operands nn into PC to point to the address in memory
where the first opcode of a subroutine is to be fetched.
(At the enc of the subroutine, a RETurn instruction can
be used to return to the original program flow Dy
popping the top of the stack back iato PC.) If
condition cc is false, the Program Counter 1is
incremented as usual, and the program continues with the
next sequential instruction, The stack push 1s
accomplished by first decrementing the current contents
of the Stack Pointer (SP), loading the high-order byte
of the PC contents into the memory address now pointed
to by SP; then decrementing SP again, and loading the
low-order byte of the PC contents into the top of the
stack. Note: Because this is a 3-byte imstruction, the
Program Counter will have Deen incremented by 3 before

2-50

the push is executed. Condition cc is programmed as one
of eight status which corresponds to condition bits in
the Flag Register (register F)., These eight status are
defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object

code:
cc Condition Relevant
Flag
000 NZ non zero Z
001 Z zero 2
010 NC non carry C
011l C carry c
100 PO parity odd P/V
101 PE parity even P/V
110 P sign positive S
111 M sign negative S

If cc is true:

4 CYCLES: 5 T STATES: 17(4,3,4,3,3)
If cc is false:

M CYCLLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents
of the Program Counter are lA47H, the contents of the
Stack Pointer are 3002H, and memory locatiomns have the
contents:

Location Contents
1A47H D4l
1A48H 351
1A49H 21H

then if an instruction fetch sequence begins, the
three-byte instruction D43521H will be fetched to the
CPU for execution, The mnemonic equivalent of this is

CALL NC,21351

2-51

After the execution of this instruction, the contents of
memory address 3001H will be lAH, the contents of
address 3000H will be 4AH, the contents of the Stack
Pointer will be 3000H, and the contents of the Program
Counter will be 2135H, pointing to the address of the
first opcode of the subroutine now to be executed.

2-52

CALL nn

Operation: (SP-1)«PCy, (SP-2)«PC; , PC+« nn

Format:
Opcode Operands
CALL an
T T T T T
11 0 0 1 1 01 Co
"l)i { it i 1
S e e
—~— ‘n
1 I} L i A b 1
T T T T
—— n -
L 1 I A 1 " I\
YNote: The first of the two n operands in the assembled

object code above is the least significant byte of a
two-byte memory address.

Description:

Afrter pushing the current contents of the Program
Counter (PC) onto the top of the external memory stack,
the operands nn are loaded into PC to point to the
address in memory where the first opcode of a subroutine
is to be fetched. (At the end of the subroutine,a
RETurn instruction can be used to return to the original
program flow by popping the top of the stack back into
PC.) The push is accomplished by first decrementing the
current contents of the Stack Pointer (register pair
SP), loading the high-order byte of the PC contents into
the memory address now pointed to by the SP; then
decrementing SP again, and loading the low=-order byte of
the PC contents into the top of stack, Note: DBecause
this is a 3-byte instruction, the Program Counter will
have been incremented by 3 before the push is executed.

M CYCLES: 5 T STATES: 17(4,3,4,3,3)

Condition Bits Affected: Wone

2-53

Example:

If the conteats of the Program Counter are 1A47H, the
contents of the Stack Pointer are 3002H, and memory
locations have the contents:

Location Contents
1A47H CDH
1A48H 35H
1A49H 21H

thean if an instruction fetch sequence begins, the
three-byte instruction CD3521H will be fetched to the
CPU for execution. The mnemonic equivalent of this is

CALL 21351

After the execution of this instruction, the contents of
memory address 300lH will be 1AH, the contents of
address 3000H will be 4AH, the contents of the Stack
Pointer will be 3000H, and the contents of the Program
Counter will be 2135H, pointing to the address of the
first opcode of the subroutine now to be executed.

CCF

Operation: CY < CY
Format:
Opcode

CCF

T T T T
0 1011 1 1 1 3F
! e

0
| S 1 L

Description:

The C flag in the F register is inverted.

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Previous carry will be copied
P/V: Hot affected

N Reset

C: Set 1if CY was 0 before
operation; reset otherwise

Operation: A-~-5s

Format:

Opcode

cp

Operands

S

2-55

CPs

The s operand is any of r,n,(HL),(IX+d) or (IY¥Y+d), as
These
various possible opcode-operand combinations are
assembled as follows in the object code:

defined for the analogous ADD instructions,

CP ¢

CP n

CP (HL)

CP (IX+d)

CP (IY+d)

[] i i H

i i

1 011 1=-—r—
L | N1 i | L A
i i DL 1 i i

1 1 111 1
i 1 1 I\ | L I
i i 1 UL i i
n -
S } S B I ! 1
4 1 1SR i) 4 i
1 0111 1
1. 1 I\ ! 1 J. I\
+] [Ll i i
1 1011 0
1 { 1 | ! 1 1
] ¥ t } ') [
1 01 11 1
1 1 i ! i A [
1 1 I I T 1 1
d -
L 1 b | 1 1
i] i i I 1} i
1 1.1 11 0
)i L 1 I J J !
i] i 1 1 0 !
1 0111 11
5 L |] I] 1
1 | i i 1 T
d
4 - L 1 ’ | S

FE

BE

0D

BE

FD

BE

*r identifies registers 5,C,D,LC,H,L or A assembled as
follows in the object code field above:

2-56

Register T
B 000
C 001
D 0lao
E 011
H 100
L 101
A 111

Description:

The contents of the s operand are compared with the
contents of the Accumulator, If there is a true
compare, a flag is set,

INSTRUCTION M CYCLES T STATES

CP r 1 4

C? (HL) 2 7(4,3)

CP (IX+d) 5 19(4,4,3,5,3)
CP (IY+d) 5 19(¢4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if result is zero;
reset otherwise
: Set if borrow from

Bit 4; reset otherwise
P/V: Set if overflow;
reset otherwise
: Set
C: Set if borrow;
reset otherwise

Example:

If the Accumulator comntains 63H, the UL register pair
contains 6000H and memory location 6000d contains 60H,
the instruction

C? (uUL)

will result in the P/V £lag in the F register being
reset.,

2-57

CPD

Operation: A=-(HL), HL<HL-T, BC < BC-1

Format:

Opcode Operands

CpPD

i i i 1 | i i
1 1 1 1011 1110 1 cD

1 1 1

T T
1 01 01 0 0 1 AS
Y SO WA ER S U

Description:

The contents of the memory location addressed by the L
register pair is compared with the contents of the
Accumulator., In case of a true compare, a condition bit
is set. The HL and the Byte Counter (register pair BC)
are decremented,

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if A= (HL);
reset otherwise

H: Set if borrow from
Bit 4; reset otherwise

P/V: Set if BC-1#0;

reset otherwise

N: Set

: Not Affected

Example:

If the HL register pair contains l1llH, memory location
1111H contains 3BH, the Accumulator contains 3BH, and
the Byte Counter contains 0001il, then after the
execution of

2-58

CPD

the Byte Counter will contain 00OOH, the HL register
pair will contain 1110H, the Z flag in the F register
will be set, and the P/V flag in the F register will be
reset., There will be no effect on the contents of the

Accumulator or address 1111H.

CPDR

Operation: A-(HL), HL<HL-1, BC « BC-1

Format:
Opcode Operands
CPDR
T i] | I] i
111011 01 ED
] 1 1 ! 1 1 L
i i i 1 L })
101 1100 1 B9
i L 1 ! |] 1
Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit
is set. The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to
zero or if A = (HL), the instruction is terminated. If BC
is not zero and A #¥ (HL), the program counter is
decremented by 2 and the instruction is repeated. Note
that if BC is set to zero prior to instruction
execution, the instruction will loop through 64K bytes,
if no match is found. Interrupts will be recognized

and two refresh cycles will be executed after each data
transfer.

For BC#0 and A#(HL):
M CYCLES: 5 T STATES: 21(4,4,3,5,5)
For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5)

2-60

Condition Bits Affected:

S: Set is result is negative;
reset otherwise
Z: Set if A = (HL);
reset otherwise
H: Set if borrow from
Bit 4; reset otherwise
P/V: Set if BC-1#0;
reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair coatains 1118H, the Accumulator
contains F3H, the Byte Counter contains 0007H, and
memory locations have these contents:

(1118H) ¢ 52H
(1117H) : O0OH
(l116H) : F3H

then after the execution of
CPDR

the contents of register pair HL will be 1115H, the
contents of the Byte Counter will be 0004H, the P/V flag

in the F register will be set, and the Z £flag in the ¥
register will be set,

2-61

CP1

Operation: A=-{(HL)_ HL < HL+1, BC <« BC-1
Format:

Opcode Operands

1110 110 1 ED

R S S R
1 01 0 0 0 01 Al
L

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accunulator, In case of a true compare, a condition bit
is set, Then iHL is incremented and the Byte Counter
(register pair BC) is decremented,.

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if A=(HL):;
reset otherwise
H: Set if borrow from
Bit 4; reset otherwise
P/V: Set if BC-1#0;
reset otherwise
N: Set
C: Not affected

Exanple:

If the HL register pair contains 111l1H, memory location
1111H contains 3Bi, the Accumulator contains 3BH, and
the Byte Counter contains 00ClH, then after the
execution of

2-62

CPIl

the Byte Counter will contain 0000H, the HL register
pair will contain 1112H, the Z flag in the F register
will be set, and the P/V flag in the F register will be
reset, There will be no effect on the contents of the

Accunulator or address ll11H.

CPIR

Operation: A-(HL), HL<«HL+1, BC « BC-1

Format:
Opcode Operands
CPIR
J] + T ' i]
1 1 101101 ED
1 i 1 ! 1 1 L
] i I . 1 ¥ i i
1 01 10001 81
L A 1 1 1 1 I
Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit
is set. The HL is incremented and the Byte Counter
(register pair BC) is decremented. If decrementing
causes the BC to go to zero or if A = (HL), the
instruction is terminated. If BC is not zero and

A # (HL), the program counter is decremented by 2 and the
instruction is repeated. Note that if BC is set to zero
before instruction execution, the.instruction will loop
through 64K bytes, if no match is found. Interrupts
will be recognized and two refresh cycles will be
executed after each data transfer.

For BC#0 and A#(HL):
M CYCLES: S T STATES: 21(4,4,3,5,5)
For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,3)

2-64

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if A=(HL);
reset otherwise
H: Set if borrow from
Bit 4; reset otherwise
P/V: Set if BC-1#0;
reset otherwise
N: Set
C: Not affected

Exanmple:

If the HL register pair contains 1111H, the Accunmulator
contains F3il, the Byte Counter contains 0007H, and
memory locatlons have these contents:

(1111H) : S2H
(11124) : OOH
(1113H) : F3H

then after the execution of

CPIR
the contents of register pair HL will be 1114H, the
contents of the Byte Counter will be 0004H, the P/V flag

in the F register will be set and the 2 flag in the F
register will be set,

2-65

CPL

Operation: A< A
Format:
Opcode

CPL

RS N S B S I
oo 1 01 1 11 2F
IR Y S S S

L

Description:

Contents of the Accumulator (register A) are inverted
(1°s complement).

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected
Z3 Not affected
H: Set

P/V: Not affected
N: Set

C: Not affected
Example:

If the contents of the Accumulator are 1011 0100, after
the execution of

CPL

the Accumulator coutents will be 0100 1011,

2-66

DAA

Operation: —
Format:
Opcode

DAA

J 7 18 v J 1)

0 01 0 0 1
I T G W S|

]

1.1
1

Description:

27

This instruction conditionally adjusts the Accunulator
for BCD addition and subtraction operatiouns.

addition (ADD,
SBC,DEC,NEG),
performed: -

ADC,

INC) or subtraction (SUB,
the following table indicates operation

For

HEX HEX
VALUE VALUE | NUMBER
c IN H IN ADDED |¢C
BEFORE|UPPER | BEFORE| LOWER | TO AFTER
OPERATION | DAA DIGIT | DAA DIGIT BYTE | DAA
(bit (bit
7-4) 3-0)
0 0~9 0 0-9 00 0
0 0-8) A=F 06 0
0 0-~9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9~F 0 A-F 66 1
INC 0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2) A=F 66 1
1 0-3 1 0-3 66 1
suB 0 0-9 | 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0
DEC 1 7~ 0 0-9 AO 1
NEG 1 6~F 1 6=F SA 1

M CYCLES: 1 T STATES: 4

~
)

[«)}

-1

Condition Bits Affected:

S: Set if most significant big
of Acc., is 1 after operation;
reset otherwise

Z: Set if Acc, is zero after operation;
reset otherwise
H: See instruction
P/V: Set if Acc, is even parity after
operation; reset otherwise
N: Not affected
C: See¢ instruction

Exanple:

If an addition operation is performed between 15 (BCD)
and 27 (BCD), simple decimal arithmetic gives this
result:

+
N -~
N

F N
o

But when the binary representations are added in the
Accunulator according to standard binary arithmetic,

0001 o101
+0010 0111l
0011 1100 3C

the sum is ambiguous., The DAA instruction adjusts this
result so that the corrxect BCD representation is
obtained:

0oll 1100
+0000 0110
0100 0010 = 42

2-68

DEC IX

Operation: IX « IX -1

Format:

Opcode Operands

DEC IX
T | T T T

11 1 1 11 0 'l DD
T LA T T T T

0 01 01 0 1 1 2B
1 1 1 1 g A]

Description:
The contents of the Index Register IX are decremented.
M CYCLES: 2 T STATES: 10 (4,6)

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 7649H,
after the execution of

DEC 1IX

the contents of Index Register IX will be 7648H.

DEC 1Y

Operation: Y « 1Y -1
Format:
Opcode Operands

DEC IY

11111101 FD

]] i]
00101011 2B
L " | 1

Description:

The contents of the Index Register IY are decremented.,
M CYCLES: 2 T STATES: 10 (4,6)

Condition Bits Affected: lione

Example:

If the contents of the Index Register 1Y are 7649H,
after the execution of

DEC 1Y

the contents of Index Register IY will be 7648H.

2-

DEC m

Operation: m<+m-l

Format:
Opcode Operands
DEC m

The m operand is any of r, (HL),(IX+d) or (IY¥Y+d), as
defined for the analogous INC instructions. These
various possible opcode-operand combinations are
assembled as follows in the object code:

i i ¥ i i]

T
DEC r 0 0~~—r—1 0 1

TR T T S S
T T T T T T
DEC (HL) 001 1010 1 35
IS S S S S S|
T T T T T T
DEC (IX+d) 1101 1101 no
AR S TR S U B

i I I i
c 60110 101 35
I\ [\ " L

DEC (IY+d) 11 1 11101 FD

6 0110101 35

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

2-71

Register r

000
001
010
oLl
100
101
111

KU Ow

Description:

The byte specified by the m operand is decremented.

INSTRUCTION M CYCLES T STATES
DEC r 1 4
DEC (HL) 3 11(4,4,3)
DEC (I1X+d) 6 23(4,4,3,5,4,3)
DEC (IY+d) 6 23(46,46,3,5,4,3)
Conditions Bits Affected:
S: Set if result is negative;
reset otherwise
Z: Set if result is zero;
reset otherwise
H: Set if borrow from Bit 4, reset
otherwise
P/V: Set if m was 80H hefore
operation; reset otherwise
H: Set

C: Not affected
Exanple:

If the D register contains byte 2AH, after the executio
of

DEC D

register D will contain 291,

2-72

DEC ss

Operation: ss<ss-=1

Format:

Opcode Operands
DEC 5s

Description:

The contents of register pair ss (any of the register
pairs BC,DE,HL or SP) are decremented. Operand ss 1is
specified as follows in the assembled object code.

Pair Ss
BC 0Q
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6

Condition Bits Affected: None

Example:

If register pair HL contains 100111, after the execution
of

DEC 1L

the contents of HL will be 10Q0H.

2-73

DJNZ, e

Operation:

Format:
Opcode Operand

DJNZ e

— 1
0 001 0000 10
JER S TN S T T

Description:

This instruction is similar to the conditional jump
instructions except that a register value 1is used to
determine branching. The B register is decremented
if a non zero value remains, the value of the
displacement e is added to the Program Counter (PC).
The next instruction is fetched from the location
designated by the new contents of the PC. The jump
measured from the address of the instruction opcode
has a range of -126 to +129 bytes. The assembler
automatically adjusts for the twice incremented PC.

1f the result of decrementing leaves B with a zero
value, the next instruction to be executed is taken
the location following this imstruction.

1f B#0:

M CYCLES: 3 T STATES: 13(5,3,5)
If B=0:

M CYCLES: 2 T STATES: 8(5,3)
Condition Bits Affected: None

Example:

and

is
and

from

A typical software routine is used to demonstrate the

use of the DJINZ instruction,
from an input buffer (INBUF) to an output buffer

This routine moves a line

2-74

(OUTBUF)., It moves the bytes until it finds a CR, oz
until it has moved 80 bytes, whichever occurs first,

LD B,80 ;Set up counter
LD HL, Inbuf 3Set up pointers
LD DE,Outbuf
J0P: LD A, (HL) ;Get next byte from
;input buffer
LD (DE) , A ;Store in output buffer
cP 00H ;Is it a CR?
JR Z ,DONE ;Yes finished
INC HL ;Increment pointers
INC DE
DJINZ LOOP ;Loop back 1f 80

;bytes have not
;been moved

2-75

El

Operation: IFF <1
Format:
upcode

EI

T T T _ T I
11111011 FB
11

L 5 | H

Description:

EI enables the maskable interrupt by setting the
interrupt enable flip-£flops(IFF1l and IFF2). Note that
this instruction disables the maskable interrupt during
its execution.

4 CYCLES: 1 T STATES: &

Condition Bits Affected: None

Example:

When the CPU executes instruction
EL

the maskable interrupt is enabled. The CPU will now
respond to an Interrupt Request (INT) signal.

2-76

EX AF, AF

Operation: AF < AF
Format:
Opcode Operands

EX AF ,AF’

T T T
0 00 01 0 0O 08
I S

1 L i J

Description:

The two-byte contents of the register pairs AF and AF’
are exchanged. (Note: register pair AF’ consists of
registers A’ and F’.)

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Exanple:

If the content of register pair AF is number 9900H, and
the content of register pair AF® is number 5944H, after
the instruction

EX AF,AF’

the contents of AT will be 5944H, and the contents of
AF” will be 9900H,

2-77

EX DE, HL

Operation: DE <« HL
Format:
Opcode Operands

EX DE,HL

111010 11 EB

Description:

The two-byte contents of register pairs DE and HL are
exchanged.

M CYCLES: 1 T STATES: 4
Condition Bits Affected: None
Example:

If the content of register pair DE is the number 2822H,
and the content of the register pair HL is number 499AK,
after the instruction

EX DE, HL

the content of register pair DE will be 499AH and the
content of register pair HL will be 2822H.

2-78

EX (SP), HL

Operation: H e (SP+1), L« (SP)
Format:
Opcode Operands

EX (sp),HL

T T T T
111 ¢ 0 0 1 1 E3
i i 1 | i

| i

Description:

The low order byte contained in register pair HL is
exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack
Pointer), and the high order byte of L is exchanged
with the next highest memory address (SP+1l).

M CYCLES: 5 T STATES: 19(4,3,4,3,5

Condition Bits Affected: None

Example:

If the HL register pair contains 70121, the SP register
pair contains 8856H, the memory location 8856l contains
the byte l1lH, and the memory location 8857H contains the
byte 22H, then the instruction

EX (§P),HL

will result in the HL Tregister pair containing number
2211H, memory location 8856H containing the byte 12H,
the memory location 8857H containing the byte 70H and
the Stack Pointer containing 88561,

EX (SP),

IXp © (SP+1), 1X| < (SP)

Operation:
Format:
Opcode

Operands

EX (SP),IX

1 101 1101 0D

i i i i
1 0 00 1 1 E3
i I i 1

Description:

The low order byte in Index Register IX is exchanged
with the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the
high order byte of IX is exchanged with the next highest
memory address (SP+1).

¥ CYCLES: 6 T STATES: 23(4,4,3,4,3,53)

Condition Bits Affected: None

Lxample:

If the Index Register IX contains 3988H, the SP register
pair contains O0l00H, the memory location 0100l contains
the byte 90H, and memory location 0l0lH contains byte
48H, then the instruction

EX (SP),IX

will result in the IX register pair containing number
48901, memory location 0100H containing 88, memory
location O0l0lil containing 39l and the Stack Poincter
containing 01004,

2-79

IX

2-80

EX (SP), 1Y

Operation: IYpQ <« (SP+1), 1Y < (SP)

Format:
Opcode Operands
EX (sp),IY

1111110 1 FD

[
111000 1 1] €3

Description:

The low order byte in Index Register IY is exchanged
with the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the
high order byte of IY is exchanged with the next highest
memory address (SP+1l).

4 CYCLES: 6 T STATES: 23(4,4,3,4,3,5)

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register
pair contains 0100i, the memory location 0l00H contains
the byte 90U, and memory location 0OlL0lH contains byte
48H, then the instruction

EX (SP),IY

will result in the IY register pair containing anumber
48901, memory location 0100H.containing 88U, memory
location 010ll containing 39H, and the Stack Pointer
containing 0100H,

EXX

Operation: (BC) < (BC’), (DE) < (DE"), (HL) < (HL")
Format:

Opcode Operands

I A B
1 1 011001 09
B!

Description:

Cach two~byte value in register pairs BC, DE, and HL is
exchanged with the two-byte value in BC®, DE", and HL”,
respectively.

M CYCLES: 1 T STATES: 4
Condition Bits Affected: None

Example:

If the contents of register pairs BC, DL, and HL are the
numbers &445Al, 3DA2H, and 8859l, respectively, and the
contents of register pairs BC’, DE", and HL® are 0938H,
9300H, and OOE7H, respectively, after the instruction

EXX
the contents of the register pairs will be as follows:

BC: 0988H; DE: 9300H; HL: OOE7H; BC": &445AH; DE”: 3DA2H;
and HL": 835911,

2-82

IMO

Operation: -—
Format:
Opcode Operands

M 0

| RN B S S N SR
1 11 0 11 01 ED

1 Il I\ . ! 1 L

T T T T 1
01 0 0 0 1 10 46
L L | | I I N

Description:

The IM O instruction sets interrupt mode 0. 1In this
mode the interrupting device can insert any instruction
on the data bus and allow the CPU to execute it,

M CYCLES: 2 T STATES: 8(4.4)

Condition DBits Affected: None

2-83

IM 1

Operation: ——

Format:

Opcode Operands

M 1

1 1 1 i e

SR S R S R RN
11101 1 0 1 eD
el

01010110 56

Description:

The IM instruction sets interrupt mode l. In ti-. mode
the processor will respond to an interrupt by executing
a restart to location 0038H.

M GYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

2-84

IM 2

Operation: —

Format:
Opcode Operands
I 2

1110110 1 ED

01 01 1110 5E

Description:

The IM 2 instruction sets interrupt mode 2. This mode
allows an indirect call to any location in memory. With
this mode the CPU forms a l6-bit memory address. The
upper eight Lits are the contents of the Interrupt
Vector Register I and the lower eight bits are supplied
by the interrupting device,

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: Wone

2-85

IN A, (n)

Operation: A <+ (n)

Format:
Opcode Operands
IN A, (n)

110110 11 0B

Description:

The operand n is placed on the bottom half (AO through
A7) of the address bus to select the I/0 device at one
of 256 possible ports, The contents of the Accumulator
also appear on the top half (A8 through Al5) of the
address bus at this time, Then one byte from the

selected port is placed on the data bus and written into

the Accumulator (register A) in the CPU.

M CYCLES: 3 T STATES: 11(4,3,4)

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte
JBH is available at the peripheral device mapped to I/0
port address OlH, then after the execution of

IN A,(01lH)

the Accumulator will contain 7BH,

2-86

IN r, (C)

Operation: r <+ (C)

Format:

Opcode Operands

IN r,(C)

1 1101101 ED

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through AlS)
of the address bus at this time. Then one byte from the
selected port is placed on the data bus and written into
register r in the CPU., Register r identifies any of the
CPU registers shown in the following table, which also
shows the corresponding 3-bit “r" field for each. The
flags will be affected, checking the .input data,

Rego r

B 000

c 001

D 010 -
E o1l

H 100

L 101

A 111

M CYCLES: 3 T STATES: 12(4,4,4)

2-87

Condition Bits Affected:

S: Set if input data is negative;

reset otherwise
Z: Set if input data is zero;

reset otherwise
H: Reset
P/V: Set if parity is even;
reset otherwise
N: Reset
C: Not affectea

Example:

If the contents of register C are 07H, the contents of
register B are 10H, and the byte 7BH is available at the
peripheral device mapped to I/0 port address O07H, then
after the execution of

IN D,(C)

INC (HL)

Operation: (HL) < (HL)+1

Format:
Opcode Operands
INC (HL)

001 10100 34

Description:

The byte contained in the address specified by the
contents of the HL register pair is incremented.

M CYCLES: 3 T STATES: 11(4,4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from

Bit 3; reset otherwise
P/V: Set if (HL) was 7FH before
operation; reset otherwise
N: Reset
C: hot Affected

Example:

If the contents of the HL register pair are 3434H, and
the contents of address 3434H are 82H, after the
execution of

INC (ML)

memory location 3434H will cantain 83,

2-89

INC (IX+d)

Operation: (IX+d) « (IX+d)}+1

Format:
Opcode Operands
INC (IX+d)

11011101 nD

0 01 1010 9 34

Description:

The contents of the Index Register IX (register pair IX)
are added to a two’s complement displacement integer d
to point to an address in memory. The contents of this
address are then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from

Bit 3; reset otherwise

P/V: Set if (IX+d) was 7FH before
operation; reset otherwise
N: Reset
C: Not affected

2-90

Example:

If the contents of the Index Register pair IX are 2020H,
and the memory location 2030H contains byte 34H, after
the execution of

ING (IX+10H)

the contents of memory location 2030Hd will be 35H.

Operation: (lY+d)« (1Y+d)+1

Format:
Opcode

| INC

2-91

INC (IY+d)

Operands

(IY+d)

Description:

FD

34

The contents of the Index Register IY (register pair IY)
are added to a two’s complement displacement integer d

to point to an address in memory.

address are then

The contents of this

incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

Set if result is negative;
reset otherwise

Set if result is zero;

reset otherwise

Set if carry from

Bit 3; reset otherwise

Set if (IY+d) was 7FH before
operation; reset otherwise
Reset

Not Affected

2-92

Example:

If the contents of the Index Register pair 1Y are 2020H,
and the memory location 2030H contain byte 34H, after
the execution of

INC (IY+1lo0H)

the contents of memory location 2030H will be 35H.

INC IX

Operation: IX«IX+1
Format:

Opcode Operands

| R EUS S SR R S
1101 1101 00

i i 3 i
0 01 00 0C 11 23
H L A L

Description:

The contents of the Index Register IX are incremented.
M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 3300H
after the execution of

INC IX

the contents of Index Register IX will be 3301H.

INCIY

Operation: IY<«IlY+1

Format:
Opcode Operands
INC 1Y
4 | i i ¥ i 1

1 111; 11101 FD

|

T T T T T
0 01 00 0 11 23
WS SN S N N

1

Description:

The contents of the Index Register 1Y are incremented,
M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If the contents of the Index Register are 2977H, after
the execution of

INC IX

the contents of Index Register IY will be 2978H,

2-95

INC r

Operation: r<r+1
Format:
Opcode Operands
INC T
3 } 1 i) 1 i
06 Qw——yr—1 0 0
| i I H 1 S

Description:

Register r is inc
registers A,B, C,
object code,

Registe

XN OS>

M CYCLES: 1 T S

Condiction Bits Af

remented,
D,E,H or L,

r identifies any of the
assenbled as follows in

r r
111
000
001
010
011
100
101

TATES: 4

fected:

Set 1f result is negative;
reset otherwise

Set if result is zero;
reset otherwise

Set if carry from

Bit 3; reset otherwise

Set if r was 7Fl before
operation; reset otherwise
Reset

Not affected

the

2-96

Example:

If the contents of register D are 28l, after the
execution of

INC D

the contents of register D will be 29h.

2-97

INC ss

Operation: ss<ss+1
Format:
Opcodes Operands

INC Ss

Description:

The contents of register pair ss (any of register pairs
BC, DE,HL or SP) are incremented. Operand ss 1is
specified as follows in the assembled object code.

Register

Pair ss
BC 0G
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6

Condition Bits Affected: None

Example:

If the register pair contains 1000l, after the execution
of

INC HL

L will contain 1001H,.

2-98

IND

Operation: (HL)<«(C), B <« B-1, HL < HL-1

Format:

11101101 ED

1 i i U i 1 i
1 0101010 AA
|

1 { L] J |

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports., Register B may be
used as a byte counter, and its contents are placed on
the top half (A8 through Al5) of the address bus at this
time. Then one byte from the selected port is placed on
the data bus and written to the CPU., The contents of
the HL register pair are placed on the address bus and
the input byte is written into the corresponding
location of memory. Finally the byte counter and
register pair HL are decremented.

M CYCLES: 4 T STATES: 16(4,5,3,4)

vondition Bits Affected:

S: Unknown
Z: Set if B-1=0;
reset otherwise

H: Unknown
P/V: Unknown

N: Set

C: unknown

Example:

If the contents of register C are 07H, the contents of
register B are 10H, the contents of the HL register pair
are 1000H, and the byte 7BH is available at the

2-99

peripheral device mapped to I1/0 port address 07H, then
after the execution of

IND
memory location 1000H will contain 7BH, the UL register

pair will contain OFFFH, and register B will contain
OFH.

2-100

INDR

Operation: (HL)+« (C), B+« B-1, HL <+ HL-1

Format:

11101 101 ED

0 BA
1

pDescription:

The contents of register C are placed on the bottom half
(AO through A7) of the address bus to select the I/O
device at one of 256 possible ports. Register B is used
as a byte counter, and its contents are placed on the
top half (A8 through Al5) of the address bus at this
time. Then one byte from the selected port is placed on
the HL register pair are placed on the address bus and
the input byte is written into the corresponding
location of memory. Then HL and the byte counter are
decremented. If decrementing . causes B to go to zero, the
instruction is terminated. If B is not zero, the PC is
decremented by two and the instruction repeated. Note
that if B is set to zero prior to instruction execution,
256 bytes of data will be input. Interrupts will be
recognized and two refresh cycles will be executed after
each data transfer.

If B#0:
M CYCLES: 5 T.STATES:21(4,5,3,4,5)
If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4)

2-101

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown

N: Set

C: unknown

Example:

If the contents of register C are 07H, the contents of
register B are O3H, the contents of the HL register pair
are 1000H, and the following sequence of bytes are
available at the peripheral device mapped to I/0 port
address 07H:

51H
A9H
03H
then after the execution of

INDR

the HL register pair will contain OFFDH, register B will
contain zero, and memory locations will have contents as
follows:

Location Contents
OFFEH 03H
OFFFH A9H

1000H 51H

2-102

INI

Operation: (HL)« (C), B « B-1, HL<«HL+1

Format:
Opcode ‘
INI ‘
) i 1 i i 1 | ‘
1 11 01101 ED
1 L) 1 Il L |

] } | } i i
10100010 A2
1 1 1 1 L

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports., Register B may be
used as a byte counter, and its contents are placed on
the top half (A8 through Al5) of the address bus at this
time, Then one byte from the selected port is placed on
the data bus and written to the CPU, The contents of
the HL register pair are then placed on the address bus
and the input byte is written into the corresponding
location of memory. Finally the byte counter is
decremented and register pair HL is incremented.

i CYCLES: 4 T STATES: 16(4,5,3,4)

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0;
reset otherwise

H: Unknown
P/V: Unknown

N: Set

C: unknown

Lxample:

If the contents of register C are 07H, the contents of
register B are 10H, the contents of the HL register pair
are 1000H, and the byte 73H is available at the
peripheral device mapped to I/0 port address 0O7H, then

2-103

after the execution of
INI
memory location 1000H will contain 7BH, the HL register

pair will countain 100lH, and register B will contain
OFH,

2-104

INIR

Operation: (HL)« (C), B+« B-1, HL<HL+1

Format:
Opcode
INIR
L L L A e
11101101 ED
SN SNUVES NS FUNEND SN SR |

10110010 B2

Description:

The contents of register C are placed on the bottom half
(AO through A7) of the address bus to select the I/O
device at one of 256 possible ports. Register B is used
top half (A8 through Al5) of the address bus at this
time. Then one byte from the selected port is placed on
the data bus and written to the CPU. The contents of
the HL register pair are placed on the address bus and
the input byte is written into the corresponding
location of memory. Then register pair HL is
incremented, the byte counter is decremented. If
decrementing causes B to go to zero, the instruction is
terminated. If B is not zero, the PC is decremented by
two and the instruction repeated. Note that if B is set
to zero prior to instruction execution, 256 bytes of
data will be input. Interrupts will be recognized

and two refresh cycles will be executed after each data
transfer.

If B#0:
M CYCLES: 5 T STATES: 21(4,5,3,4,5)
If B=Q:

M CYCLES: 4 T STATES: 16(4,5,3,4)

2-105

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown

N: Set

C: unknown

Example:

If the contents of register C are O7H, the contents of
register B are O03H, the contents of the HL register pair
are 1000H, and the following sequence of bytes are
available at the peripheral device mapped to I/0 port of
address O7H:

S1H
A9H
03H
then after the execution of

INIR

the HL register pair will contain 1003H, register B will
contain zero, and memory locations will have contents as
follows:

Location Contents
1000H 51H
1001H A9H

1002H 031

JP cc, nn

Operation: IF cc TRUE,PC <+ nn

Format:
Opcode Operands
JP cc,nn
1 i 4 ¥ i | v

Note: The first n operand in this assembled object code
is the low order byte of a 2-byte memory address,

Description:

If condition cc is true, the instruction loads operand
nn into register pair PC (Program Counter), and the
program continues with the instruction beginning at
address an, If condition cc is false, the Program
Counter is incremented as usual, and the program
continues with the next sequential instruction.
Condition cc is programmed as one of eight status which
corresponds to condition bits in the Flag Register
(register F). These eight status are defined in the
table below which also specifies the correspondiag cc
bit fields in the assembled object code.

cc CONDITION RELEVANT
FLAG

000 ¥Z non zero A

001 Z zero A

010 NC no carry c

011 C carry c

100 PO parity odd P/v

101 PE parity even P/V

110 P sign positive S

111 M sign negative S

2-107

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: Hone

Example:

If the Carry Flag (C flag in the F register) is set and
the contents of address 1520 are 03i, after the
execution of

JP C,1520H
the Program Counter will contain 1520H, and on the next

machine cycle the CPU will fetech from address 1520H the
byte 03H,

2-108

JP (HL)

Operation: PC<+HL

Format:

Opcode Operands

JP (HL)

i EB T
1110 1 0 01 £9

L L 1 !) ! I

Description:

The Program Counter (register pair PC) is loaded with
the contents of the HL register pair. The next
instruction is fetched from the location designated by
the new contents of the PC,

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the
contents of the HL register pair are 4800H, after the
execution of

JP (HL)

the contents of the Program Counter will be &4800H.

JP (IX)

Operation: PC<«IX

Format:
Opcode Operands
Jp (1IX)
1 1 4] i LR
1101 11601 DD
L i I i L 1 L

Description:

The Program Counter (register pair PC) is loaded with
the contents of the IX Register Pair (Index Register
IX). The next instruction is fetched from the location
designated by the new contents of the PC,.

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and
the contents of the IX Register Pair are 4800H, after
the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

2-110

JP (IY)

Operation: PC<«lY
Format:
Opcode Operands

Jp (1Y)

1 1111101 FD

Description:

The Program Counter (register pair PC) is loaded with
the contents of the IY register pair (Index Register
IY). The next instruction is fetched from the location
designated by the new contents of the PC.

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Example:
If the contents of the Program Counter are 1000il and the
contents of the IY Register Pair are 4800H, after the
execution of

JP (1Y)

the contents of the Program Counter will be 4800H.

2-111

JP nn

Operation: PC<nn

Format:

Opcode Operands
Jp nn
i 1 } LY 3 i

1 100 0 0 1 1 C3

Note: The first operand in this assembled object code
is the low order byte of a 2~byte address.

Description:

Operand nn is loaded into register pair PC (Program
Counter) and points to the address of the next program
instruction to be executed.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

JR e

Operation: PC+«PC+e

Format:
Opcode Operand
JR e
) i] 1 [} 1]
0 00 1 1 0 00 i8
L 1 L L 1 !
] i]]] i i
- e-2 -
SR N W VR IR N

Description:

This instruction provides for unconditional branching to
other segments of a program. The value of the
displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location
designated by the new contents of the PC, This jump is
measured from the address of the instruction cpcode and
has a range of ~126 to +129 bytes. The assembler
automatically adjusts for the twice incremented ?C,

M CYCLES: 3 T STATES: 12(4,3,5)

Condition Bits Affected: None

Example:

To jump forward 5 locations from address 480, the
following assembly language statement is used:

JR $+5

The resulting object code and final PC value is shown
below:

Location Instruction

480 18

481 03

482 —

483 -—

484 —_

485 ~— PC after jump

JR C,

If C=0, continue
fC=1, PC«PC+e

Operation:

Format:
Opcode Operands
JR C,e
}] AR i i
0001 1 10 00 38
i I i 1 1 I 1
i i] 1 i 1] 1
- e-2

Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Carry Flag. If the flag is equal to a
“l”, the value of the displacement e is added to the

Program Counter (PC) and the' next instruction is fetched

from the location designated by the new contents of the
PC. The jump is measured from the address of the
instruction opcode and has a range of -126 to +129
bytes. The assembler automatically adjusts for the
twice incremented PC,

If the flag is equal to a “0°, the next instruction to
be executed is taken from the location following this
instruction.

If condition is met:

M CYCLES: 3 T STATES: 12(4,3,5)
If condition is not met:

{ CYCLES: 2 T STATES: 7(4,3)
Conditiou Bits Affected: Wone

Example:

The Carry and it is

locations

Flag is set
from 480,

required to jump Dback 4

The assembly language statement 1is:

2-113

2-114

JR C,$-4
The resulting object code and final PC value is shown
below:

Location Instruction

47C <~— PC after jump

47D —_—

L7E —

47F —

480 38

481 FA (2°s complement-6)

2-115

JR NC, e

Operation: If C=1, continue
ifC=0, PC«<PC+e

Format:
Opcode Operands
JR NC,e
1 i LUl i | J L i
0 01 1.0 00O 30
e I I\ 4 1 | S|
¥ 1] 4 1 i 1
- e-2
- i I 4 1 ! 1

Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Carry Flag., If the flag is equal to ‘07,
the value of the displacement e is added to the Progran
Counter (PC) and the next instruction is fetched from
the location designated by the new contents of the PC,
The jump is measured from the address of the instruction
opcode and has a range of =126 to +129 bytes. The
assembler automatically adjusts for the twice
incremented PG,

If the flag is equal to a ‘17, the next instruction to
be executed is taken from the location following this
instruction,

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5)

If the condition is not met:

M CYCLES: 7 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the
jump instruction, The assembly language statement i§:

2-116

JR NC,$

The resulting object code and PC after the jump are

shown below:
Location

480
481

Instruction

30 «<— PC after jump
00

JR NZ,

Operation: IfZ=1, continue
ifZ=0, PC<PC+e
Format:
Opcode Operands
JR KZ,e

Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Zero Flag. If the flag is equal to a “07,
the value of the displacement e is added to the Progran
Counter (PC) and the next instruction is fetched from
the location designated by the new contents of the PC.
The jump is measured from the address of the instruction
opcode and has a range of =126 to +129 bytes. The
assembler automatically adjusts for the twice
incremented 2C,

If the Zero Flag is equal to a ‘17, the next instruction
to be executed is taken from the location following this
instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5)

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back &
locations from 480, The assembly language statement is:

2-117

2-118
JR NZ,$-4

The resulting object code and £final PC value is shown
below:

Location Instruction

47¢C
47D
47E
47F
480
481

PC after jump

2ol

(2’ complement-6)

2-119

JR Z, e

Operation: 1fZ=0, continue
ifZ=1, PC+<PC+e

Format:
Opcode Operands
JR Z,e
i 1 } LR 1 1
0 01 01 0 0N 28
i 1] i 1 L
1]] 1 1 1] b
- e-2
i H L 1 L L 1

Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Zero Flag. If the flag is equal to a ‘17,
the value of the displacement e is added to the Program
Counter (PC) and the next instruction is fetched from
the location designated by the new contents of the PC,
The jump is measured from the address of the instruction
opcode and has a range of =126 to +129 bytes., The
assembler automatically adjusts for the twice
incremented PC.

If the Zero Flag is equal to a “0°, the next instruction
to be executed is taken from the location following this
instruction.,

If the condition is met:

i CYCLES: 3 T STATES: 12(4,3,5)

If the condition is not net:

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

The Zero ¥Flag is set and it is required to jump forward
5 locations from address 300, The following assembly
language statement is used:

2-120

JR.Z2,$ +5

The resulting object code and final PC value is shown
below:

Location Instruction

300
301
302
303
304
305

)
3

O™

P

PC after jump

2-121

LD A, (BC)

Operation: A<« (BC)
Format:
Opcode Operands

LD A, (BC)

T T T T T
0 0001 0 10 0A
i |

] L o b L

Description:

The contents of the memory location specified by the
contents of the BC register pair are loaded into the
Accumulator,

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and
memory address 4747H contains the byte 12H, then the
instruction

LD A, (BC)

will result in byte 12H in register A.

LD A, (DE)

Operation: A <« (DE)
Format:
Opcode Operands

LD A, (DE)

i i] 1]) il i
00011010 1A
L

| L | { i 1

Description:

The contents of the memory location specified by the
register pair DE are loaded into the Accumulator,

¥ CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: Ncne

Example:

If the DE register pair contains the number 30A2H aad
nemory address 30A2H contains the byte 22H, then the
instruction

LD A, (DE)

will result in byte 22H in register A.

2-123

LD A, (nn)

Operation: A <« {(nn)
Format:
Opcode Operands

LD A, (nn)

0611101020 3A

Description:

The contents of the memory location specified by the
operands nn are loaded into the Accumulator. The first

n operand is the low order byte of a two=byte memory
address,

M CYCLES: & T STATES: 13(4,3,3,3)

Condition Bits Affected: None

Exanmple:

If the contents of nn is number 8832H, and the content
of memory address 8832H is byte 04H, after the
instruction

LD A, (nn)

byte O4H will be in the Accumulator,

2-124

LDA,I

Operation: A <«

Format: | 1
Opcode Operands
LD A, I
4 4 |] A . ' |
11101 1 01 ED

Description:

The contents 0of the Interrupt Vector Register I are
loaded into the Accumulator,

i CYCLES:2 T STATES: 9(4,5)

Condition Bits Affected:

S: Set if I-Reg. is negative;
reset otherwise

Z: Set if I-Reg. is zero;
reset otherwise

Ii: Reset

P/V: Contains contents of IFF2
N Reset
C: Not affected

Example:

If the Interrupt Vector Register contains the byte &4AH,
after the executioa of

LD A, I

the accumulator will also contain 4AH,

LD A

Operation: A<« R

rormat:
Opcode Operands
LD A,R
[] |] i] i
111 0 1 1 0 1 ED
SR W U NN S N
¥ i P i] T T

61011111 5F

Description:

The contents of llemory Refresh Register R are loaded
into the Accumulator,

M CYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected:

S: Set 1f R-Reg. is negative;
reset otherwise

Z: Set if R-Reg., is zero;
reset otherwise

H: Reset

P/V: Contains contents of IFF2
M Reset
C: Wot affected

Example:

If the lMemory Refresh Register contains the byte &4AH,
after the execution of

LD A,R

the Accunulator will also contain 4Al.

2-125

2-126

LD (BC), A

Operation: (BC)<« A
Format:
Opcode Operands

LD (BC), A

.1 & & & b
0O 00 n 0010 02

I\ I i J U] "

Description:

The contents of the Accumulator are loaded iato the
memory location specified by the contents of the
register pair BC,

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair
contains 1212H the instruction

LD (BC),A

will result in 7AH being in memory location 12121,

2-127

LD dd, nn

Operation: dd<nn
Format:
Opcode Operands

LD dd, an

| B N S S S
0 0 dd 0 0 0 1
e

)
L L { H i

i i i i i } }

-l L 1 !] H H

Description:

The two-byte integer nn is loaded into the dd register
pair, where dd defines the BC, DE, HL, or SP register
pairs, assembled as follows in the object code:

Pair f&l
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the
low order byte.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:
After the execution of
LD HL, 5000H

the contents of the HL register pair will be 5000H,

2-128

LD dd, (nn)

Operation: ddy « (nn+1), dd| <« (nn)

Format:
Opcode Operands
LD dd, (nn)
[} i 1 T T [}

1110 1 1 0 1 ED

T 1 T ! T
n —
L) ! { L |
T 1 ; T T T
- n —

Description:

The contents of address nn are loaded into the low
order portion of register pair dd, and the contents of
the next highest memory address nuan+l are loaded into
the high order portion of dd. Register pair dd defines
8C, DE, HL, or SP register pairs, assembled as follows
in the object code: ‘

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above
is the low order byte of (nn).

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If Address 21301l contains 651 and address 2131M contains
78H after the instruction

LD BC,(2130H)

the BC register vpair will contain 7863H,

LD (DE), A

Operation: (DE)<« A

Format:
Opcode Operands |
LD (DE) ,A

D00 100 1 0] 12

Description:

The contents of the Accumulator are loaded into the
memory location specified by the DE register pair,

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the
Accunmulator contains byte AOH, the instruction

LD (DE),A

will result in ACH being in memory location 11281,

2-131

LD (HL), n

Operation: (HL)<+n

Format:

Opcode Operand

LD (HL) ,n
i i V i 4 I RN

0 0110110 36
Il i i 1 1 |
1 i i ' i i)
n

L L 1 H] L J

Description:

Integer n is loaded into the memory address specified by
the contents of the HL register pair.,

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:
If the HL register pair contains 4444H, the instruction
LD (HL), 28H

will result in the memory location 4444H containing the
byte 28H,

LLD HL, (nn)

Operation: H <« (an+1), L« (nn)

Format:
Opcode Operands
LD HL, (nn)

00 1 0 1 0 10 2A

Description:

The contents of memory address nan are loaded into the
low order portion of register pair HL (register L), and
the contents of the next highest memory address nn+i
are loaded into the high order portionm of UL (register
H). The first n operand in the assembled object code
above is the low order byte of nn,

M CYCLES: 5 T -STATES: 16(4,3,3,3,3)

Condition Bits Affected: Mone

Example:

If address 4545H contains 37H and address 4546H contains
Alll after the instruction

LD HL, (4545H)

the HL register pair will contain Al37H.

LD (HL),

Operation: {(HL)<«r
Format:

Opcode Operands

LD (HL), r

| S S R B I
0111 0~—r—

| | 1 L . L 1

Description:

The contents of register r are loaded into the memory
location specified by the contents of the liL register
pair. The symbol r identifies register A, B, C, D, E, H
or L, assembled as follows in the object code:

Register Y

A= 111

B = 000

¢ = 001

D = 010

E =011

H = 100

L = 101
M CYCLES: 2 T STATES: 7(4,3)
Condition Bits Affected: None
Example:

1f the contents of register pair HL specifies memory
location 2146H, and the B register contains the byte
29H, after the execution of

LD (ul), B

memory address 2146H will also contain 29H.

2-133

LDI A

Operation: | <« A
Format:

Opcode Operands

111011 01 ED

T T
0100 0 1 11 47
SR SRR

Description:

The contents of the Accunulator are loaded into the
Interrupt Control Vector Register, I.

¥ CYCLES: 2 T STATES: 9(4,5)
Condition Bits Affccted: None
Example:

If the Accumulator contains the number 81, after the
instruction

LD I,A

the Interrunt Vector Register will also contain 81H.

2-135

LD IX, (nn)

Operation: I[Xpy « (ant+1), IX « (nn)

Format:
Opcode Operands
LD IX,(nn)
1'1'0 1'1°1 0 1| oD
1 b1 1 1]
] | R) 1
0O 01 001 0 10O 2A
L 1 i 1 i L
1 1 i 1] 1 1
n) o
i i] I 1]
i I i 1 1 1]
- n
] | | 1 1 | 1

Description:

The contents of the address nn are loaded into the low
order portion of Index Register IX, and the contents of
the next highest memory address nan+l are loaded into
the high order portion of IX, The first n operand in the
assembled object code above is the low order byte of nn.
1 CYCLES: 6 T

STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAUH, after the instruction

LD IX,(6606H)

the Index Register IX will contain DA92ZH,

LD IX, nn

Operation: [X <+« nn

Format:
Opcode Operands
LD IX,nn

110111 01 CD

3 T 1 ¥ 1
0010 0 0 0 1 21

Description:

Integer nn is loaded into the Index Register IX, The
first n operand in the assembled object code above is
the low order byte.

M CYCLES: 4 T - STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:
After the instruction
LD IX,45A2H

the Index Register will contain integer 45A2H.

2-137

LD (IX+d), n

Operation: (IX+d)<n

Format:
Opcode Operands
LD (IX+d), n
] i LI i i i

11011101 0D

Description:

The n operand is loaded into the memory address
specified by the sum of the contents of the Index
Register IX and the two’s complement displacement
operand d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the
instruction

LD (IX+5H), 5AH

would result in the byte 5AHd in the memory address
2197,

2-138

LD (IX+d), r

Operation: (IX+d)<«r

Format:
Opcode Operands
LD (IX+d), r

11011101 0D

Description:

The contents of register r are loaded into the memory
address specified by the contents of Index Register IX
summed with d, a two’ s complement displacement integer,
The symbol r identifies register A, B, C, D, E, H or L,
assembled as follows in the object code:

Register T
A =111
B = 000
C = 001
D =010
E = 011
H =100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

2-139
Example:

If the C register contains the byte 1CH, and the Index
Register I1X contains 3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into
memory location.3106H,

2-140

LD IY, nn

Operation: 1Y «<nn
Fformatz:
Opcode Operands
LD IY,nn
i i i LN i LR
111 1 1 1 0 1 FD
L 1 1 | i L '

Description:

Integer nn is loaded into the Index Register IY. The
first n operand in the assembled object code above is
the low order byte.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: Hone

Example:
After the instruction:
LD IY,7733H

the Index Register IY will contain the integer 7733H.

2-141

LD IY, (nn)

Operation: Yy «{nn+1), 1Y « (nn)
Format:

Opcode Operands

LD IY, (nn)

T T T T T
1 1 1 11101 FD
! L

1 L !

201 0 1 0 1 0 2A

Description:

The contents of address nn are loaded into the low
order portion of Index Register IY, and the contents of
the next highest memory address nn+l are loaded into
the high order portion of IY. The first n operand in the
asscnbled object code above is the low order byte of an.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If address 66661 contains 92H and address 6667H contains
DAH, after the instruction

LD IY,(6666H)

the Index Register IY will contain DAS2H,

2-142

LD (IY+d), n

Operation: (IY+d)«n

Format:
Opcode Operands
LD (IY+d) ,n
{ i ¥ i 1 i ¥
11 1 1 110 1 FD
| 1 | S | L 1

00110110 36

Description:

Integer n is loaded into the memory location specified
by the contents of the Index Register summed with a
displacement integer d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: NONE

Exanple:

If the Index Register IY contains the number A940H, the
instruction

LD (IY+10H), 97U

would result in byte 97 in memory location A95CH,

LD (IY+d), r

Operation: (lY+d) «r

Format:
Opcode Operands
LD (I¥Y+d), «
i L i i i +
11 111101 FD
] | 1 It L 1 1

Description:

The contents of register r are io0aded into the memory
address specified by the sum of the contents of the
Index Register 1Y and d, a two’s complement displacenment
integer., The symbol r is specified according to the
following table.

Register r
111
000
001
010
0l1
100
101

M E O W

M CYCLES: 5 T STATES: 19(4,4.3.5,3)

Condition Bits Affected: None

2-144

Example:

If the C register contains the byte 48H, and the Index
Register IY contains 2A11H, then the instruction

LD (IY+4H), C

ill perform the sum 2A11H + 4H, and will load 48H into
memory location 2415,

LD (nn),

Operation: (nn) <« A
Format:
Opcode Operands

LD (nn) yA

Description:

The contents of the Accumulator are loaded into the
menory address specified by the operands nn. The first

n operand in the assembled object code above is the low
order byte of nn,.

if CYCLES: 4 T STATES: 13(4,3,3,3)

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after
the execution of

LD (3141H),A

D710 will be in memory location 3141i,

2-145

LD (nn), dd

Operation: (nn+1)<«ddy, (nn) < ddp

Format:
Opcode Operands
LD (an) ,dd

4) b i 4 LR
11101101 ED

(0]
—
Q.
.
-
o
o
—
—

Description:

The low order byte of register pair dd is loaded into
menory address nn ; the upper byte is loaded into
memory address nn+l , Register pair dd defines either
BC, DE, HL, or SP, assembled as follows in the object

code:
Pair dd
BC 00
DE 0l
HL 10
Sp 11

The first n operand in the assembled object code is the
low order byte of a two byte memory address,

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

2-147

Example:

If register pair BC contains the number 4644H, the
instruction

LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in
memory location 1Q00lH.

2-148

LD (nn), HL

Operation: (nn+1)«<H (an) <L
Format:

Opcode Operands !

LD (nh) , HL

| R B R S
0O 01 0 0 0 10 22

Description.

The contents of the low order portion of register pair
HL (register L) are lcaded into memory address nn , and
the contents of the high order portion of HL (register
H) are loaded into the next highest memory address

no+l , The first n operand in the assembled object
code above is the low order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3)

Condition Bits Affected: None

Example:

1f the content of register pair UL is 483AH, after the
instruction

LD (B229H),iuL

address B229H) will contain 3AH, and address B22AH will
contain 48H.

2-149

LD (nn), IX

Operation: (nn+1) «IXy , (nn) «IXL

Format:
Opcode Operands
LD (nn) , IX

i] i i P 1 L
11011101 00

1 i] L I i 1

1 i i i] [i
0 61 0 0010 22

1 L 1) 1 1 |

i [1L] 1 I

1 ! 1 1 1 1 1

Description:

The low order byte in Index Register IX is loaded into

wmemory address an ; the upper order byte is loaded into
the next highest address nn+l ., The first n operand in
the assembled object code above is the low order byte of

nn.

M CYCLES: 6 T STATES: 20(4,4,3.3,3,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the
instruction

LD (4392"),1X

memory location 4392l will contain number 30i and
location 4393H will contain 5AH.

LD (nn), IY

Operation: (nn+1) < 1Yy, (nn) < 1Y

Format:
Opcode Operands
LD (nn) ,I1Y¥
i t) i i T i
1 1 1 1 1 1 0 1 FD
i i 1 1 i | I

I i i 1l I v]
0o 01000 10 22

Description:

The low order byte in Index Register IY is loaded into
menory address nn ; the upper order byte is loaded into
memory location nn+l , The £first n operand in the
assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If the Index Register IY contains &4174H after the
instruction

LD 8838H,1Y

memory location 8838H will contain number 74l and memory
location 88391 will contain 4lll,

LD R,

Operation: R+« A

Format:
Opcode Operands
LD R,A

11101 101 ED

T
01 00 1111 4F
L ! L -

Description:

The contents of the Accumulator are loaded into the
Memory Refresh register R,

M CYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected: None

Example:

If the Accumulator contains the number B4H, after the
instruction

LD R,A

the lfemory Refresh Register will also contain B4H,

2-151

2-152

LD r, (HL)

Operation: r <« (HL)

Format:
Opcode Operands
LD r, (HL)
[}) i 1 1 i 4
N 1-=——yr—1 1 0
{ 1 1 i L I\ i

Description:

The eight-bit contents of memory location (HL) are
loaded into register r, where r identifies register A,
B, ¢, D, E, H or L, assembled as follows in the object

code:
Register r
A= 111
B = 000
C = 001
D 010
E 0l1
H = 100
L = 101
M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If register pair HL contains the number 75AlH, and
nemory address 75AlH contains the byte 58U, the
execution of

LD C, (HL)

will result in 58H in register G,

2-153

LD r, (IX+d)

Operation: r <« (IX+d)
Opcode Operands
LD r, (ILX+d)
T T T T
1 1 0 1 1 0 1 DD

Description:

The operand (IX+d)

or L,
Register r

111
000
001
010
011l
100
101

[gt~ o = I o W o~
| N O B O |

M CYCLES: 5 T STATES:

Condition Bits Affected:

19(¢4,4,3,5,3)

None

Example:

hel
b,

assembled as follows in the object code:

c,

D,

If the Index Register IX contains the number 25AFH,

instruction

(the contents of the Index Register
IX summed with a displacement integer d) is loaded into
register r, where r identifies register A,

E,

the

H

2-154

LD B, (IX+19H)

will cause the calculation of the sum 25AFH + 19H,
points to memory location 25C8H. If this address

contains byte 39H, the instruction will result in
register B also containing 39H.

which

Operation:

Format:

2-155

LDr, (IY+d)

r < (1Y+d)

Opcode Operands

LD r, (IY+d)

i1 111101 FD

Description:

The operand (IY+d) (the contents of the Index Register
1Y summed with a displacement integer d) is loaded into
register r, where r identifies register A, 3, C, D, E, H
or L, assembled as follows in the object code:

Register

RO oW

M CYCLES:

r

111
000
001
010
0l1l
100
101

5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: Wone

2-156

Example:

If the Index Register IY contains the number 25AFH, the
instruction

LD B, (IY+19H)

will cause the calculation of the sum 25AFH + 194, which
points to.memory location 25C8H., If this address
contains byte 39H, the instruction will result in
register B also containing 39H.

2-157

LDr n

Operation: r+<n

Format:

Opcode Operands
LD r, n

Description:

The eight-bit integer n is loaded into any register r,
where r identifies register A, B3, C, D, E, Hor L,
assembled as follows in the object code:

Register r
A= 111
B = 000
C = 001
D =010
E =011
H = 100
L = 101
M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:
After the execution of
LD E, ASH

the contents of register E will be ASH,.

2-158

ILDr, '

Operation: r<7yr

Format:
Opcode Operands
LD r,r’
| 1 i] i i 11
0 1+—r—r—~—ryr —
U L I\ I\ | S

Description:

The contents of any register r° are loaded into any
other register r, Note: r,r’ identifies any of the
registers A, B, C, D, E, H, or L, assembled as follows
in the object code:

Register r,r’
A =111
b = 000
C = 001
D = 010
E = 011
H = 100
L = 101
Y CYCLES: 1 T STATES: &

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E
register contains 1CH, the ianstruction

LD H, E

would result in both registers containing 1OH,

2-159

LD SP, HL

Operation: SP<« HL
Format:

Opcode Operands

LD SP,HL

1 i i
1 1 11 11,0101 1 F9

Description.

The contents of the register pair UL are loaded into the
Stack Pointer SP.

M CYCLES: 1 T STATES: 6

Condition Bits Affected: None

Exanmple:

If the register pair L contains 442EH, after the
instruction

LD SP,HL

the Stack Pointer will also contain 442EH,.

2-160

LD SP, IX

Operation: SP<«IX

Format:
Opcode Operands
LD sP, IX

1101 1101 0D

111110 0 1 F9

Description:

The two byte contents of Index Register IX are loaded
into the Stack Pointer SP,

M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAN,
after the instruction

LD SP,IX

the contents of the Stack Pointer will also be 98DAI.

2-161

LD SP, IY

Operation: SP<«I1Y
Format:

Opcode Operands

LD SP, 1Y

Description:

The two byte contents of Index Register 1Y are loaded
into the Stacx Pointer SP,

I{ CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Exanple:
If Index Register 1Y contains the integer A227i, after
the instruction

LD s?,1IY

the Stack Pointer will also contain A227l.

2-162

LDD

Operation: (DE)<«(HL), DE <« DE-1, HL < HL-1, BC«BC-1

Format:
Opcode Operands
|
LDD

11101101 ED

i
1 0

i
1 I}

LR) 1 i
1 010 00 A8
1

1 1 L L

Descripttion:

This two byte instruction transfers a byte of data from
the memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. Then both of these
register pairs including the BC (Byte Counter) register
pair are decremented.,

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Not affected
Z: HWot affected
H: Reset

P/V: Set if BC-1#0;

reset otherwise
Reset
Not affected

O =

2-163

Example:

If the HL register pair contains 1111H, memory location
11114 contains the byte 88H, the DE register pair
contains 2222H, memory location 2222H contains byte 66H,
and the BC register pair contains 7H, then the
instruction

LDD

will result in the following contents in register pairs
and memory addresses:

HL 1110H

(1111H) 88H
DE : 2221H
(2222H) : 88H

BC 6H

2-164

LDDR

Operation: (DE) <« (HL), DE <+ DE-1, HL «<HL-1, BC «~BC-1

Format:
Opcode Operands
LDDR

1110110 1 ED

T T 1
1 0 0 O B8
1 I\ 1

Description:

This two byte instruction transfers a byte of data from
the memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. Then both of these
registers as well as the BC (Byte Counter) are
decremented. If decrementing causes the BC to go to
zero, the instruction is terminated. If BC is not zero,
the program counter is decremented by 2 and the
instruction is repeated. Note that if BC is set to zero
prior to instruction execution, the instruction will loop
through 64K bytes. Interrupts will be recognized and
two refresh cycles will be executed after each data
transfer.

For BC#O0:

M CYCLES: 5 T STATES: 21(4,4,3,5,5)
For BC=0:

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Not affected
Z: Not affected
e Resect

P/V: Reset
N: Reset

C:

Not affected

Example:

2-165

If the HL register pair contains 1114H, the DE register

pair contains 2225H,

0003H,

(1114H)
(1113H)
(1112H)

then after the

LDDR

the

BC register pair contains

and memory locations have these contents:

AS5H (22251) c5H
36H (2224H) : 59H
§8H (2223H) : o6H

execution

the contents of register

be:

HL
DE
BC :

11114
22224
00COO0H

(1114H) :
(1113H) :
(1l112H) :

ASH
36H
88H

(2225H)
(2224H)
(2223H)

of

pairs and memory locations will

: ASH
: 36U
: 88H

2-166

LDI

Operation: (DE)< (HL), DE < DE+1, HL < HL+1_ BC « BC-1

Format:
Opcode Operands
LDI

i i i] i i i
11 1 0 1101 ED

L 1 o L | i 1

] i | DL | i 1
1 01000 QO AO
L L I\ L

- ! 1

Description:

A byte of data is transferred from the memory location
addressed by the contents of the HL register pair to the
memory location addressed by the contents of the DE
register pair. Then both these register pairs are
incremented and the BC (Byte Counter) register pair is
decremented,

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC-1#0;
reset otherwise
N: Reset
C: Not affected

2-167

Example:

If the HL register pair contains 1111H, memory location
1111H contains contains the byte 88K, the DE register

pair contains 2222H, the memory location 2222H contains
byte 66ll, and the BC register pair contains 7H, then the

instruction
LDI

will result in the following contents in register pairs
and memory addresses:

UL : 1112H
(1111u) = 884

DE ¢ 2223H
(2222H) : 88H

BC H 6H

LDIR

Operation: (DE)<« (HL), DE < DE+1, HL < HL+1, BC « BC-1

rormat:
Opcode Operands
LDIR
|) i i i 4 Ll

i I i]
1011 0000 80

Description:

This two byte instruction transfers a byte of data from
the memory location addressed by the contents of the HL
register pair to the memory location addressed by the DE
register pair. Then both these register pairs are
incremented and the BC (Byte Counter) register pair is
decremented. If decrementing causes the BC to go to
zero, the instruction is terminated. If BC is not zero
the program counter is decremented by 2 and the instruction
is repeated. Note that if BC is set to zero prior to
instruction execution, the instruction will loop throuch
64K bytes. Interrupts will be recognized and two refresh
cycles will be executed after each data transfer.

For BC#0:
4 CYCLES: 5 T STATES: 21(4,4,3,5,5)
For BC=0:

M CYCLES: ¢& T STATES: 16(4,4,3,5)

2-169

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Reset
W Reset

C: Not affected

Exanple:

If the HL register pair contains 11l1l1H, the DE register
pair contains 2222H, the BC register pair contains
00031, and memory locations have these contents:

(1111d) : 88H (222211) : 66U
(1112d) : 36l (2223H) : 59H
(1113H) : AS5H (2224H) : COSH

then after thé execution of
LDIR

the contents of register pairs and memory locations will
be:

HL : 1114H
DE : 2225H
BC : 0000H
(1111H) : 88H (22224) : 88H
(1112H) : 36H (2223H) : 36H

(1113H) .: ASH (2224H) : AS5H

2-170

NEG

Operation: A <« 0-A
Format:
Opcode

NEG

| IR EEE B na Sa—
1110110 1 ED
R R U

1 1 1

L 1 i) i i i
01 0001°¢0CO 44
i i 1! 1) 1 i

Description:

Contents of the Accumulator are negated (two’s
complement), This is the same as subtracting the
contents of the Accumulator from zero. Note that 80H is
left unchanged,

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if borrow from

Bit 4; reset otherwise
P/V: Set if Acc, was 80H before
operation; reset otherwise
N: Set
C: Set if Acc, was not OOH before
ooperation; reset otherwise

Example:

If the contents of the Accumulator

after the execution of
NEG

the Accunmulator contents will be

are

2-171

2-172

NOP

Operation: e—
Format:
Opcode

NOP

T T T T T T T
0 000 0D O0O0 00
1 i 1

| 1 1

Description:

CPU performs no operation during this machine cycle.
M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Operation:

Format:

Opcode

OR

A<AVs

Operands

S

2-173

OR s

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as

defined for the analogous ADD instructions.

These

various possible opcode-operand combinations are
assembled as follows in the object code:

OR ¢

OR n

OR (HL)

OR (IX+d)

OR (IY+d)

K i T T T i T
1 01 1 0=~—r—
| L | I 1 L |
) T i T] T T
11 1 01 0
| 1 { ! ! 1 1
T T I T T T T
- n —-
I L H 1 L L 1
) T] V] T
1 01 1 0 1 0
L L ! H L I i
T 1 T i T T i
11 1 1 1 1
L 1 L L L I\ 1
T T T] V T T
10 1 0 1 0
1 L .] 1 " I
i t } t i + i
— d —
L e L H 1 1)
i 1]) i i o
1 1 1 1 1 1
s I l i I !
] i T T T T T
10 1 0 1 0
1 i L | i ! H
i i 1 i | 1 T
d -
e l . N ! L |

Fé

B6

0D

FO

*r identifies registers 3,C,D,E,H,L or A asscmbled as
follows in the object code field above:

2-174

Register T

000
001
010
ol1l
100
101
111

PO Etmo QR

Description:

A logical OR operation, bit by bit, is performed between
the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in
the Accumulator,

INSTRUCTION 11 CYCLES T STATES

OR r 1 4

OR (HL) 2 7(4,3)

OR (IX+d) 5 19(4,4,3,5,3)
OR (I1Y+d) 5 19¢(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

i: Set

P/V: Set if parity even;

reset otherwise

N: Reset

C: Reset

Example:

If the H register contains 48H (010001000) and the

Accumulator contains 12H (00010010) after the execution
of

OR H

the Accumulator will contain S5AIl (01011010).

2-175

OTDR

Operation: (C)« (HL), B« B-1, HL<HL-1

Format:

11101101 ED

L) L)
1 0111011 BB
ul 1 L L |

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored
in the CPU, Then, after the byte counter (B) is
decremented, the contents of register C are placed on
the bottom half (A0 through A7) of the address bus to
select the I/0 device at one of 256 possible ports.
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
Al5) of the address bus at this time. Next the byte to
be output is placed on the data bus and written into the
selected peripheral device., Then register pair HL is
decremented and if the decremented B register is not
zero, the Program Counter (PC) is decremented by 2 and
the instruction is repeated., If B has gone to zero, the
instruction is terminated. Note that if B is set to
Zzero prior to instruction execution, the instruction
will output 256 byte of data. Also, interrupts will be
recognized after each data transfer,

If B#0:
M CYCLES: 5 T STATES: 21(4,5,3,4,5)
I1f B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4)

2-176

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown

N: Set

C: unknown

Example:

If the contents of register C are 07H, the contents of
register B are O03H, the contents of the HL register pair
are 1000H, and memory locations have the following
contents:

Location Contents
OFFEH 51H
OFFFH A9H
10001 03H

then after the execution of
OTDR

the HL register pair will contain OFFDH, register B will
contain zero, and a group of bytes will have been
written to the peripheral device mapped to I/O port
addres O7H in the following sequence:

03H
A9H
51

2-177

OTIR

Operation: (C)«(HL), B+« B-1, HL <« HL+1

Format:

11 101101 ED

[] i
101100 1 1| 83
) IR W ST |

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored

in the CPU. Then, after the byte counter (B) is
decremented, the contents of register C are placed on

the bottom half (AO through A7) of the address bus to
select the I/0O device at one of 256 possible ports.
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
Al5) of the address bus at this time. Next the byte to

be output is placed on the data bus and written into the
selected peripheral device. Then register pair HL is
incremented. TIf the decremented B register is not zero,
the Program Counter (PC) is decremented by 2 and the
instruction is repeated. If B has gone to zero, the
instruction is terminated. Note that if B is set to zero
prior to instruction execution, the instruction will output
256 bytes of data. Interrupts will be recognized and

two refresh cycles will be executed after each data transfer.

I1f B#0¢
M CYCLES: 5 T STATES: 21(4,5,3,4,5)
1f B=Q:

M CYCLES: 4 T STATES: 16(4,5,3,4)

2-178

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown

N Set

C: unknown

Example:

If the contents of register C aré& O07H, the contents of
register B are 03H, the contents of the HL register pair
are 1000H, and memory locations have the following
contents:

Location Contents
1000H S1H
1001H A9H
1002H 03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will
contain zero, and a group of bytes will have been
written to the peripheral device mapped to I/0 port
address 07H in the following scquence:

51H
A9H
03l

2-179

OUT (C), r

Operation: (C)<«r
Format:
Opcode Operands

ouT (C),r

T T T T T
11101101 ED
S W N

1 A I

L R B | —
0 1 =-=——r—-0 0 1
AR VRS DU | S S

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through AlS)
of the address bus at this time. Then the byte
contained in register r 1s placed on the data bus and
written into the selected peripheral device., Register r
identifies any of the CPU registers shown in the
following table, which also shows the corresponding
3=bit "r" field for each which appears in the assembled
object code:

Register r

000
001
010
011
100
101
1il

PN HUOW

M CYCLES: 3 T STATES: 12(4,4,4)

2-180

Condition Bits Affected: None

Example:

If the contents of register C are Olll and the contents
of register D are 5AH, after the execution of

0UT (C),D

the byte 5AH will have been written to the peripheral
device mapped to I1/0 port address 0lH,

2-181

OUT '(n), A

Operation: (n)« A

Format:
Opcode Operands
ouT (n) ,A

1 1010011 D3

Description:

The operand n is placed on the bottom half (A0 through
A7) of the address bus to select the 1/0 device at onmne
of 256 possible ports. The contents of the Accumulator
(register A) also appear on the top half (A8 through
Al5) of the address bus at this time. Then the byte
contained in the Accumulator is placed on the data bus
and written into the selected peripheral device.

M CYCLES: 3 T STATES: 11(4,3,4)

Condition Bits Affected: None

Exanple:

If the contents of the Accumulator are 23H, then after
the execution of

0UT OlH,A

the byte 231 will have been written to the peripheral
device mapped to I/0 port address OlH.

2-182

OuTD

Operation: (C)+« (HL), B+« B-1, HL <« HL-1
Format:
Opcode

OUID

1’1101 1 0 1| ED

1 3 1 | E— | 1

10 10 1 0 1 1] A8
1

1 1 1 i 1 L

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored
in the CPU. Then, after the byte counter (B) is
decremented, the contents of register C are placed on
the bottom half (A0 through A7) of the address bus to
select the I/0 device at one of 256 possible ports.
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
Al5) of the address bus at this time, Next the byte to
be output is placed on the data bus and written into the
selected peripheral device. Finally the register pair
HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4)

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0;
reset otherwise

H: Unknown
P/V: Unknown

N: Set

C: unknown

Example:

If the contents of register C are 07H, the contents of

2-183

register B are 10H, the contents of the HL register pair
are 1000H, and the conteats of memory location 1000H are
59H, after the execution of

QUTID
register B will contain OFH, the HL register pair will

contain OFFFH, and the byte 59U will have been written
to the peripheral device mapped to I/0 port address O7H.

OUTI

Operatian:

(C) «+(HL), B+«B-1, HL«<HL+1

Format:
Opcode ‘
OUTI |
1 i] 1 i 1 i
1 11 01101 ED
1 1) 1 i | 1
kB i 1§ 1 § i 1
1 0100011 A3
1 L I | S { I

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory., The byte
contained in this memory location is temporarily stored
in the CPU., Then, after the byte counter (B) is
decremented, the contents of register C are placed on
the bottom half (A0 through A7) of the address bus to
select the I/0 device at one of 256 possible ports.,
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
AlS5) of the address bus, The byte to be output is
placed on the data bus and written into selected
peripheral device, Finally the register pair HL is
incremented,

4 CYCLES: & T STATES: 16(4,5,3,4)

Condition Bits Affected:

S: Unknown
Z: Set if B=1=0;
reset otherwise

H: Unkanown
P/V: Unknown

N: Set

C: unknown

Example:

If the contents of register C are 07H, the contents of
register B are lOH, the contents of the HL register pair
are 1000H, and the contents of memory address 1000H are

2-185

59H, then after the execution of
OUTIL
register B will contain OFH, the HL register pair will

contain 1001H, and the byte 59H will have been written
to the peripheral device mapped to I/0 port address 07H.

2-186

POP IX

Operation: IXy« (SP+1), IX « (SP)
Format:

Opcode Operands

11011101 Wy

)) i 1 ¥ i i
111006 001 El
Ll

Description:

The top two bytes of the external memory LIFO0 (last-in,
first=-out) Stack are popped into Index Register IX. The
Stack Pointer (SP) register pair holds the 16-bit
address of the current “top" of the Stack., This
instruction first loads into the low order portion of IX
the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded
into the high order portion of IX. The SP is now
incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000d, memory location
1000H contains 55H, and location 100lH contains 33H, the
instruction

POP IX

will result in Index Register IX containing 3355H, and
the Stack Pointer containing 1002H.

2-187

POP 1Y

Operation: Yy« (SP+1), 1Y « (SP)

Format;
Opcode Operands
POP IY

1111110 1 FD

111000 0 1 El

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IY. The
Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This
instruction first loads into the low order portion of IY
the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded
into the high order portion of IY, The SP is now
incremented again,

¥ CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: one

Example:

If the Stack Pointer contains 1000H, memory location
1000 contains 55H, and location 100lH contains 33H, the
instruction

POP IX

will result in Index Register IY containing 3355H, and
the Stack Pointer containing 1002H,

2-188

POP qq

Operation: qqy < (SP+1), qq + (SP)

Format:
Opcode Operands
POP qq

1] i I] i i
1 1 g g 00 0 1
i !

! L ! | 1

Description:

The top two bytes of the external memory LIFO (last-in,
first=out) Stack are popped into register pair qq. The
Stack Pointer (SP) register pair holds the 1lé6-bit
address of the curreant "top" of the Stack. This
instruction first loads into the low order portion of
qq, the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents
of the corresponding adjacent memoxy location are loaded
into the high order portion of qq and the SP is now
incremented again, The operand qq defines register pair
BC, DE, HL, or Ar, assembled as follows in the object
code:

Pair r
3C 00
DE 01
HL 10
AT 11

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

2-189

Example:

If the Stack Pointer contains 1000H, memory location

1000 contains 55H, and location 1001 contains 33H, the
instruction

POP HL

will result in register pair HL containing 33554, an

d
the Stack Pointer containing 1002i.

2-190

PUSH IX

Operation: (SP-2) « X, (SP-1) «I[Xy
Format:

Opcode Operands

11011101 oy

Kl i 1
111920101 ES

Description:

The contents of the Index Register IX are pushed into
the external memory LIFO (last-in, first-out) Stack.

The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack, Tais
instruction first decrements the SP and loads the high
order byte of IX into the memory address now specified
by the SP; then decrements the SP again and loads the
low order byte into the memory location corresponding to
this new address in the SP,

M CYCLES: 3 T STATES: 15(4,5,3,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack
Pointer contains 1007H, after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address
1005H will contain 33H, and the Stacx Poianter will
contaia 1005H.,

2-191

PUSH 1Y

Operation: (SP-2) <« 1Y, (SP-1) <Yy

Format:
Opcode Operands
PUSH IY

117111101 FD

Description:

The contents of the Index Register IY are pushed into
the external memory LIFO (last-in, first-out) Stack.
The Stack Pointer (SP) register pair holds the 16-bit
address of the current '"top" of the Stack, This

instruction first decrements the SP and loads the high
order byte of 1Y into the memory address now specified

by the SP; then decrements the SP again and loads the
low order byte into the memory location corresponding
this new address in the SP.

M CYCLES: & T STATES: 15(4,5,3,3)

Condition Bits Affected: lione

Example:

If the Index Register 1Y contains 2233H and the Stack
Pointer contains 10G7H, after the instruction

PUSH 1Y

memory address 1006H will contain 22H, memory address
10051 will contain 33H, and the Stack Pointer will
contain 10051,

to

2-192

PUSH qq

Operation: (SP—2)+~qu,(SP-1)+-qu

Format:
Opcode » Operands

PUSH qq

i 1 1 i] 1]
1 1 g g0 1 0 1
{ | W

A |

Description:

The contents of the register pair qq are pushed into the

external memory LIFO (last-in, first-out) Stack. The
Stack Pointer (SP) register pair holds the l6-bit
address of the current "top" of the Stack. This

instruction first decrements the SP and loads the high
order byte of register pair qq into the memory address
now specified by the SP; then decrements the SP again
and loads the low order byte of qq into the memory
location corresponding to this new address in the SP,
The operand qq means register pair BC, DE, HL, or AF,
assembled as follows in the object code:

‘Pair qq
BC 00
DE 01
HL 10
AF 1

M CYCLES: 3 T STATES: 11(5,3,3)

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack
Pointer contains 10074, after the instruction

PUSH AT
memory address 1006l will contain 22i, memory address

1005H will contain 33H, and the Stack Pointer will
contain 1005H.

2-193

RES b, m

Operation: sp<0
Format:

Opcode Operands

RES b,m
Operand b is any bit (7 through 0) of the contents of
the w operand,(any of r, (iiL), (IX+d) or (IY+d))as
defined for the analogous SET ianstructions. These

various possible opcode-operand combinations are
assembled as follows in the object code:

13 i] R ' i i
RES b,r 1100 1 0 11 c8
{ } 1 1 ; | i
10 e b ey
i i 1 I i 1 1
i i I i T T I
RES b, (HL) 1100 1 0 1 1]
1 1 L L L 1 I\
T ¥ | T]] [

RES b, (IX+d)

—
p—a
O
—
i
oy
(@]
[

0D

1} i i T '] 1
d -
| 1 I\ " L i !
i \ |}] i | \
1 0 «—b——1 1 0
L] J U | i ! !
i i i] i i 3
RES b, (IY¥+d) 11 1 1 1 1 0 1 FD
1 L i1) ! !
i 1 i 1 | ! i
1100 1 0 1 1 (B
L | ! | H L i
i | i I T] |
- d

2-194

Bit Reset b Register r
0 000 B 000
1 001l c 001
2 010 D 010
3 011 E 611
4 100 H 100
5 101 L 101
6 110 A 111
7 111

Description:

Bit b in operand m is reset.

INSTRUCTION M CYCLES T STATES

RES r 4 8(4,4)

RES (HL) 4 15¢4,4,4,3)

RES (IX+d) 6 23(4,4,3,5,4,3)
RES (IY+d) 6 23(4,4,3,5,4,3)
Condition Bits Affected: None

Example:
After the execution of
RES 6,D

bit 6 in register D will be reset, (Bit 0 in register D
is the least significant bit.)

2-195

RET

Operation: PCp«(sp), PCp<« (SP+1)
Format:
Opcode

RET

T T T T T 1
11001001 €9
1 1 I I ! -

1

Description:

Control is returned to the original progran flow by
popping the previous contents of the Program Counter
(PC) off the top of the external memory stack, where
they were pushed by the CALL instruction, This is
accomplished by first loading the low=-order byte oi the
PC with the contents of the memory address pointed to by
the Stack Pointer (SP), then incrementing the SP and
loading the high-order byte of the PC with the contents
of the memory address now pointed to by the SP. (The SP
is now incremented a second time.) On the following
machine cycle the CPU will fetch the next program opcode
from the location in memory now pointed to by the PC.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

If the contents of the ¥rogram Counter are 3535H, the
contents of the Stack Pointer are 2000H, the contents of
memory location 2000H are BSH, and the contents of

memory location 2001lH are 18H, then after the execution
of

RET
the contetns of the Stack Pointer will be 20021 and the

contents of the Program Counter will be 18B5H, pointing
to the address of the next program opcode to be fetched.

2-196

RET cc

Operation: IF cc TRUE: PC+ (SP), PCy< (SP+I)
Format:
Opcode Operand

RET cc

) i i) i]]
1 l-q-—CC—a- g 0
I — i 1 1 I

Description:

If condition cc is true, control is returned to the
original program flow by popping the previous contents
of the Program Counter (PC) off the top of the external
memory stack, where they were pushed by the CALL
instruction, This is accomplished by first loading the
low-order byte of the PC with the contents of the memory
address pointed to by the Stack Pointer (SP), then
incrementing the SP, and loading the high-order byte of
the PC with the contents of the memory address now
pointed to by the SP, (The SP is now incremented a
second time,) On the following machine cycle the CPU
will fetch the next program opcode from the location in
nemory now pointed to by the PC., 1If condition cc is
false, the PC is simply incremented as usual, and the
program continues with the next sequential instruction.
Condition cc is programmed as one of eight status which
correspond to condition bits in the Flag Register
(register F)., These ecight status are defined in the
table below, which also specifies the corresponding cc
bit fields in the assembled object code.

cc Condition Relevant
Flag

000 NZ non zero Z

001 Z zero Z

010 NC non carry C

011 C carry c

100 PO parity odd 2/V

101 PE parity even P/V

110 P sign positive S

111 M sign negative S

2-197

If cc is true:

M CYCLES: 3 7T STATES: 11(5,3,3)
If cc is £false:

M CYCLES: 1 T STATES: 5

Condition Bits Affected: None

Example:

If the § flag in the F register is set, the contents of
the Program Counter are 3535H, the contents of the Stack
Pointer are 2000H, the contents of memory location 20004
are B5H, and the contents of memory location 20Q1ld are
184, then after the execution of

RET H
the contents of the Stack Pointer will be 2002H and the

contents of the Program Counter will be 18B35H, pointing
to the address of the next program opcode to be fetched.

2-198

RETI

Operation: Return from interrupt
Format:
Opcode

RETI

S B DRl RS R
1110110 1 ED
L 1

I\ L | I L

A S R R B R
01 0901 101 4D
1 I\

1)| | 1 1

Description:

This instruction is used at the end of an interrupt
service routine to:

1. Restore the contents of the Program Counter (PC)
(analogous to the RET instruction)

2. To signal an I/O device that the interrupt routine
has been completed. The RETI instruction facilitates
the nesting of interrupts allowing higher priority
devices to suspend service of lower priority service
routines. The state of IFF2 is copied into IFF1.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B connected in a
daisy chain configuration with A having a higher
priority than 3,

L &1 1EO I IEQ pmm—

T |

2-199

B gencrates an interrupt and is acknowledged. (The
interrupt enable out, IEO, of B goes low, blocking any
lower priority devices from interrxupting while B is
being serviced), Then A generates an interrupt,
suspending service of B, (The IEO of A goes “low’
indicating that a higher priority device is being
serviced,) The A routine is completed and a RETI is
issued resetting the IEO of A, allowing the B routine to
continue, A second RETI is issued on conmpletion of the
B routine and the IEO of B is reset (high) allowing
lower priority devices interrupt access,

2-200

RETN

Operation: Return from non maskable interrupt

Format:
Opcode
RETN

T T 1
1 110 1 1 0 1 ED

T T T T T T
01 0 00 1 0 1 45
1 i

Description:

Used at the end of a service routine for a non maskable
interrupt, this instruction executes an unconditional
return which functions identical to the RET instruction.
That is, the previously stored contents of the Program
Counter (PC) are popped off the top of the external
memory stack; the low-order byte of PC is loaded with
the contents of the memory location pointed to by the
Stack Pointer (SP), SP is incremented, the high-order
byte of PC is loaded with the contents of the memory
location now pointed to by SP, and SP is incremented
again, Control is now returned to the original program
flow: on the following machine cycle the CPU will fetch
the next opcode from the location in memory now pointed
to by the PC, Also the state of IFF2 is copied back
into IFFl to the state it had prior to the acceptance of
the NMI,

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:

If the contents of the Stack Pointcer are 1000H and the
contents of the Program Counter are lA45H when a non
maskable interrupt (NMI) signal is received, the CPU
will ignore the next instruction and will instead
restart to memory address 00661, That is, the cur:-ent
Program Counter contents of 1A45H will be pushed onto
the external stack address of OFFFH and OFFEK, high

2-201

order~byte first, and 0066H will be loaded onto the
Program Counter, That address begins an interrupt
service routine which ends with RETN instruction., Upon
the execution of RETN, the former Program Counter
contents are popped off the external memory stack,
low-order first, resulting in a Stack Pointer contents
again of 1000H, The program flow continues where it
left off with an opcode fetch to address l1A451.

2-202

RL m

Operation:

*17"—'0 4“|

m
Format:
Opcode Operands
RL |

The m operand is any of r,(HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions. These
various possible opcode-operand combinations are
specified as follows in the assembled object code:

RLr 1T1l0lollloll 1 CB

I\ L 1 1 L L L

A S S S S S
0 0 0 1 0w—pr—
S DU W U SR SR

| R SN B RN SN B
RL (uL) 1 100 1 0 1 1| <8

1 I\ J | | § Il

3 H
000010110l 18

RL (IX+d) 11011101 0D

) i i i i
00010110 16

RL (IY+d)

2-203

11111101 FD
AN N WU S NN N |
i 3 | i t i]
11001 0 11 CB
IS U W S A S
1 i i 1 | i b
- d
I N R NU N N
] i I i 1 i i
0 0001 01 120 16
T T SN R S

*r identifies registers B,C,D,E,d,L or A specified as
the assembled object code above:

follows in

Register r
B 000
C 001
D 010
E Oll
H 011
L 101
A 111

Description:

The contents of the m operand are rotated left: the
content of bit 0 is copied into bit 1;
content of bit 1 is copied into bit 2;

continued throughout the byte,

the previous
this pattern is

The content of bit 7 is

copied into the Carry Flag (C flag in register F) and
the previous content of the Carry Flag is copied into
bit 0 (Bit O is the least significant bit,)

INSTRUCTION M CYCLES
RL ¢ 2
RL (HL) 4
RL (IX+d) 6
RL (1Y+d) 6

T STATES

8(4,4)
15(4,4,4,3)
23(4,4,3,5,4,
23(4,4,3,5,4,

3)
3)

2-204

Condition Bits affected:

S: Set 1if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity even;

reset otherwise

N: Reset

C: Data from Bit 7 of

source register
Example:

If the contents of register D and the Carry Flag are

after the execution of
RL D

the contents of register D and the Carry Flag will be

2-205

RLA

cYy 7<~—0-J

Operation:

Format:
Opcode Operands

RLA

00006 10 11 1] 17

A L " I L | N

Description:

The contents of the Accumulator (register A) are rotated
Jeft: the content of bit 0 is copied into bit 1; the
previous content of bit 1 is copied into bit 2; this
pattern is continued throughout the register. The
content of bit 7 is copied into the Carry TFlag (C flag
in register F) and the previous content of the Carry
Flag is copied into bit 0, Bit 0 is the least
significant bit,

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected
Z: Not affected
il Reset

P/V: Not affected
N: Reset

: Data from Bit 7 of Acc,

Example:

If the contents of the Accumulator and the Carry Flag
are

after the execution of
RLA

the contents of the Accumulator and the Carry Flag will
be

Operation:

Format:

2-207

RLCA

]]

A

Opcode Operands

RLCA

T 7 T 7 T 1 T
6 000 01 11 07
1 i 1 1 !

1 I

Description:

The contents of the Accumulator (register A) are rotated
left: the content of bit 0 is moved to bit 1; the
previous content of bit 1 is moved to bit 2; this
pattern is continued throughout the regiscter. The
content of bit 7 is copied into the Carry Flag (C flag
in register F) and also into bit 0. (Bit 0 is the least
significant bit.)

M CYCLES: 1 T STATES:4

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Wot affected
N: Reset

C: Data from Bit 7 of Acc.

2-208

Example:

If the contents of the Accumulator are

after the execution of
RLCA
the contents of the Accumulator and Carry Flag will be

¢c 7 6 5 4 3 2 1 0

2-209

RLC (HL)

Operation:

{HL)
Format:
Opcode Operands
RLC (HL)

T T 1
1 10 0 1 0 11 CB
Lol

L 1

Description:

The contents of the memory address specified by the
contents of register pair HL are rotated left: the
conteant of bit O is copied into bit 1l; the previous
content of bit 1 is copied into bit 2; this pattern 1s
continued throughout the byte, The content of bit 7 is
copied into the Carry Flag (C flag in register F) and
also into bit 0. Bit O is the least significant bit.

14 CYCLES: & T STATES: 15(4,4,4,3)

Condition 3its Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

He Reset

P/V: Set if parity even;

reset othexwise

N: Reset

C: Data from Bit 7 of

source registerx

2-210

Example:

If the contents of the HL register pair are 2828H, and
the contents of memory location 2828H are

7 6 5 4 3 2 1 0O

after the execution of
RLC (HL)

the contents of memory location 2828H and the Carry TFlag
will be

2-211

RLC (IX+d)

B ————

) CYfn7 ~— g
Operation:
{IX+d)
Format:
Opcode Operands
RLC (1X+d)

Description:

The contents of the memory address specified by the sum
of the contents of the Index Register IX and a two’s
complement displacement integer d, are rotated left: the
contents of bit 0 is copied into bit 1l; the previous
content of bit 1 is copied into bit 2; this pattera is
continued throughout the byte., The content of bit 7 is
copied into the Carry Flag (C flag in register F) and
also into bit 0. Bit 0 is the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z; Set if result is zero;
reset otherwise

i: Reset

P/V: Set if parity even;

reset otherwise

N: Reset

C: Data from Bit 7 of

source register

2-212

Example:

If the contents of the Index Register IX are 1000H, and
the contents of memory location 1022H are

7 6 5 4 3 2 1 0

after the execution of
RLC (IX+2H)

the contents of memory location 1002H and the Carry Flag
will be

2-213

RLC (IY+d)

Sl

(1Y +d)

Operation:

Format:
Opcode Operands

RLC (IY+d)

111111 0 1 FD

0000011 0l o6

| ! i 1 L 1

Description:

The contents of the memory address specified by the sum
of the contents of the Index Register IY and a two’s
complenent displacement integer d are rotated left: the
content of bit 0 is copied into bit 1; the previous
content of bit 1 is copied into bit 2; this process is
continued throughout the byte. The content of bit 7 is
copied into the Carry Flag (C flag in register F) and
also into bit 0., Bit 0 is the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set 1f result is zero;
reset otherwise

H: Reset

P/V: Set if parity ecven;

reset otherwise

N: Reset

G: Data from Bit 7 of

source register

2-214

Example:

If the contents of the Index Register IY are 1000H, and
the contents of memory location 1002H are

after the execution of
RLC (IY+2H)

the contents of memory location 1002H and the Carry Flag
will be

2-215

RLC r

on: B
Operation:

r

Format:
Opcode Operands
RLC r

N B S B
110010 11 CB
! !

1 1 1 1 L

T T T T T i 7
0 0 0 0 0Q=—r—
Lol L1] L 1

Description:

The eight-bit contents of register r are rotated left:
the content of bit 0 is copied into bit l; the previous
content of bit 1 is copied into bit 2; this pattern is
continued throughout the register. The content of bit 7
is copied into the Carry Flag (C flag in register F) and
also into bit 0., Operand r is specified as follows in
the assembled object code:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111
Note: Bit 0 is the least significant bit.

M CYCLES: 2 T STATES: 8(4,4)

2-216

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set 1f result is zero;
reset otherwise

: Reset

P/V: Set if parity even;

reset otherwise

N Resect

C: Data from Bit 7 of
source register

Example:

If the contents of register r are

after the execution of
RLC r

the contents of register r and the Carry Flag will be

L 00 IQJ,I O(0] 0 lj

2-217

RLD

Opcode Operands

1110 1 1 01 ED

001 1 0 1 1 1 1 oF

Description:

The contents of the low order four bits (bits 3,2,1 and
0) of the memory location (HL) are copied into the high
order four bits (7,6,5 and &) of that same nemory
location; the previous contents of those high order four
bits are copied into the low order four bits of the
Accumulator (register A); and the previous contents of
the low order four bits of the Accumulator are copied
into the low order four bits of memory location (HL).
"The contents of the high order bits of the Accunulator
are unaffected., ©Note: (liL) means the memory location
specified by the contents of the HL register pair,

M CYCLES: 5 T STATES: 18(4,4,3,4,3)

Condition Bits Affected:

S: Set if Acc., is negative after
operation; reset otherwise

Z: Set if Acc., is zero after
operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even

after operation; reset otherwise

N Reset

C: wot affccted

2-218

Example:

If the contents of the HL register pair are 5000H, and
the contents of the Accumulator and memory location
5000H are

011 1)1 1101160 Accunulator

o(o0jJ1j1j0j0}j0]1 (5000H)

after the execution of
RLD

the contents of the Accumulator and memory location
5000H will-be

011 1 101011 1 Accumulator

ojo0j0;141jy0j31¢0 (5000H)

L

Operation:

Format:

10

Opcode

RR

The m operand is any of r,
defined for the analogous RLC instructions.
various possible opcode-operand combinations are

specified as follows in the assembled object code:

RR ¢

RR (HL)

RR (IX+d)

(HL),

(IX+d),

or (IY+d),
These

T 1 i Ry i i T
110010 CB
1! I | 1 A | |
i o T I T i
0 0 0 1 1=-—yr—
! L. 1 i A I
J | Rl T ! i i
1100 10 CB
L S i !
¥ | T L I
o 0 0 1 11 0 it
b L 1 ! | " L
¥ i i T | L 3
110 1 11 1 0D
i . | H i i !
I T T 1 T | T
1 100 10 1 CB
ool] 1 1 L
T i i T T T T
- d
L i A L I
| DL] i L i
60 6 0 1 1 1) 1E
1]) | ! 5 L

2-219

as

2-220

_
RR (IY+d) 11 11 o0 1E

1111 0101 1 0 1 1 CB

0 00 1 1 1 1 0} 1€ |
i1 ! L

1 . Il

*r ldentifies registers B,C,D,E,l,L or A specified as
follows in the assembled object code atove:

Register r

000
001
0l0
0l1
100
101
111

PO Ow

Description:

The contents of operand m are rotated right: the
contents of bit 7 is copied into bit 6; the previous
content of bit 6 is copied into bit 5; this pattern is
continued throughout the byte., The content of bit 0 is
copied into the Carry Flag (C flag in register F) and
the previous content of the Carry Flag is copied into

bit 7, Bit 0 is the least significant bit,
INSTRUCTION M CYCLES T STATES

RR r 2 8(4,4)

RR (HL) 4 15¢4,4,4,3)

RR (IX+d) 6 23(4,4,3,5,4,3)
RR (I1Y+d) 6 23(4,4,3,5,4,3)

2-221

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity is evenj;

reset otherwise

R Reset

C: Data from Bit 0 of
source register

Example:

If the contents of the HL register pair are 43431, and
the contents of memory location 4343H and the Carry Flag
are

after the execution of
RR (HL)

the contents of location 4343H and the Carxy Flag will
be

011’1‘0 111‘\1 O_‘l\lhl

2-222

RRA

Qperation:

Format:

Opcode Operands

0001 1111 1F

Description:

The contents of the Accumulator (register A) are rotated
right: the content of bit 7 is copied into bit 6; the
previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The
content of bit 0 is copied into the Carry Flag (C flag
in register F) and the previous content of the Carry
Flag is copied into bit 7., Bit 0 is the least
significant bit,

¥ CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected
Z: ot affected
H: Reset

P/V: Not affected
e Reset

: Data from Bit 0 of Acc.

2-223

Example:

If the contents of the Accumulator and the Carry Flag
are

after the execution of
RRA

the contents of the Accumulator and the Carry Flag will
be

2-224

RRCA

Operation:

[:7—*’0 ‘Eﬂ

A
Format:
Opcode Operands

RRCA

i i 1 i kB
0 000 1 1 11 or
t

Description:

The contents of the Accumulator (register A) is rotated
right: the content of bit 7 is copied into bit 6; the
previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The
content of bit O is copied into bit 7 and also into the
Carry Flag (C flag in register F.) Bit O is the least
significant bit,

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: liot affected
Z: Not affected
H: Reset

P/V: Not affected
W Reset

C: Data from Bit 0 of Acc.

2-225

ELxample:

If the contents of the Accumulator are

After the execution of
RRCA

the contents of the Accumulator and the Carxry Flag will
be

2-226

RRC m

Operation:

17— 0 cY

Format:

Opcode Operands

RRC m
The m operand is any of r,(HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions. These

various possible opcode-operand combinations are
specified as follows in the assembled object code:

S S S B S B
RRC r 11 0010 11 CB

! | 1 | | L !

T T T T
0 0 0 0 1=~«—r-—

R S TN S S
R SR SR SR B S

RRC (HL) 11001011 CB
1 I | 1 1 ! 1
T T T T T

{ 1 1 | I\ | |

RRC (IX+d) 1101 1 101 0D

2-227

RRC (IY+d) 11111101 FD

] i i 1 T 3
o000 1110 QE

%*r identifies registers B,C,D,E,d,L or A specified as
follows in the assembled object code above:

Register r

000
001
010
011
100
101
111

> EMUO O

Description:

The contents of operand m are rotated right: the content
of bit 7 is copied into bit 6; the previous content of
bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied
into the Carry Flag (C flag in the F register) and also

into bit 7. Bit O is the least significant bit,
INSTRUCTION M CYCLES T STATES

RRC r 2 8(4,4)

RRC (HL) 4 15(4,4,4,3)

RRC (IX+d) 6 23(4,4,3,5,4,3)

RRC (I1Y+d) 6 23(4,4,3,5,4,3)

2-228

Condition Bits Affected:

S: Set 1f result is negative;
reset otherwise
Z: Set 1f result is zero;

reset otherwise
H: Reset

P/V: Set if parity even;
reset otherwise
He Reset
C: Data from Bit 0O of

source register
Example:
If the contents of register A are

7 6 5 4 3 2 1 0

after the execution of
RRC A

the contents of register A and the Carry Flag will be

2-229

RRD

Operation:
i
"Format:

Opcode Operands

' i [) Rl i [
01 1000 111 67
!)

Description:

The contents of the low order four bits (bits 3,2,1 and
0) of memory location (HL) are copied into the low order
four bits of the Accumulator (register A); the previous
contents of the low order four bits of the Accumulator
are copied into the high order four bics (7,6,5 and &)
of location (HL); and the previous contents of the high
order four bits of (HL) are copied into the low order
four bits of (HL). The contents of the high order bits
of the Accunmulator are unaffected. Note: (L) means
the memory location specified by the contents of the HL
register pair.

M CYCLES: 5 T STATES: 18(4,4,3,4,3)

Condition Bits Affected:

S: Set if Acc. is negative after
operation; reset otherwise

Z: Set if Acc. is zero after
operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even after

operation; reset otherwise

N: Reset

C: Hot affected

2-230

Example:

If the contents of the HL register pair are 5000H, and

the contents of the Accumulator and memory location
5000H are

11,010} 01011 010 Accumulator

0y0(1}10;0;0]0}0 (50001)

after the execution of
RRD

the contents of the Accumulator and memory location
5000H will be

1 olojo|0oi;0]01}O0 Accunulator

oj1/0]j0(0]0!1]O0 (50004d)

2-231

RST p

Operation: (SP-1) «PCh , (SP-2) « PC_ . PCH<«<0, PC <P

v ———————————

Format:

Opcode Operand

RST P

T T T T T. 1
l l=—t—1 11

1 i | 1 1 1 !

Description:

The current Program Counter (PC) contents are pushed
onto the external memory stack, and the page zero memory
location given by operand p is loaded into the PC.
Program execution then begins with the opcode in the
address now pointed to by PC. The push is performed Dby
first.decrementing the contents of the Stack Pointer
(SP), loading the high-order byte of PC into the memory
address now peinted to by SP, decrenenting SP again, and
loading the low-order byte of PC into the address now
pointed to by SP. The ReSTart instruction allows for a
jump to one of eight addresses as shown in the table
below. The operand p is assembled into the object code
using the corresponding T state, Note: Since all
addresses are in page zero of memory, the high order
byte of PC is loaded with O00H. The number selected
from the "p" column of the table is loaded into the
low-order byte of PGC.

P t
00H 000
o8H 00l
10H 010
18H 011l
20H 100
28U 101
30H 110
38H 111

M CYCLES: 3 T STATES: 11(5,3,3)

2-232

Example:

If the contents of the Program Counter are 15B3H, after
the execution of

RST 18H (Object code 1101111)

the PC will contain 0018H, as the address of the next
opcode to be fetched.

Operation: A< A-s5-CY

| "Format:
Opcode Operands
SBC A,s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as

| defined for the analogous ADD instructions, These
various possible opcode-operand combinations are
assembled as follows in the object code:

T T i T T 1 T
SBC A,r 1 0 0 1 1=—pr—
! i L 1 l 1
i i)) 1N]]
SBC A,n 1101 11 1 0} Dt
L L [{ ! A L.
i i i 1l I i i
—~— n -~
! L 1 ! L 1 |
Ll i i T k) | i
S3C A, (HL) 1 00 1 1 1 10 9E
1 e ! | L ! !
V T T T T T T
SBC A, (IX+d) 1 1 01 1 1 0 1 DD
L 1. | | 11 |

1001 11 1 0] o€

| 1 1 L 1 1]
1 1] ' H R I

- d
1] | | 1 !
i i i) t l_

SBC A, (IY+4d) 1 111 1 10 1 FD
1 1 | | | 1 |
1’00 11 110 9t

| | N 1 ! 1 i
T i) ' | R

~ ¢ -
1 ! L L 1

*r identifies registers B3,C,D,E,l,L or A assecmbled as
follows in the object code field above:

2-234

Register r

000
001
010
011
100
101
11l

PUrOEDHUOOwW

Description:

The s operand, along with the Carry Flag ("C" in the F
register) is subtracted from the contents of the

Accunulator,
Accumulator,

and the result is stored in the

INSTRUCTION M CYCLES T STATES

SBC A,r 1 4

SBC A,n 2 7(4,3)

SBC A, (HL) 2 7(4,3)

SBC A,(IX+d) 5 19¢4,4,3,5,3)
SBC A, (I1Y+d) 5 19(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if borrow from
Bit 4; reset otherwise

P/V Set if overflow;

reset otherwise

N: Set

C: Set if borrow;

reset otherwise
Example:
If the Accumulator contains 1i6H, the
the HL register pair contains 3433H,
contains O0S5H, after the execution of

SBC A, (UL)

the Accumulator will contain 10H,

carry flag is sect,
and address 3433H

2-235

SBC HL, ss

Operation: HL<«HL-ss-CY
Format:

Opcode Operands

SBC HL,ss

11101101 ED

Description:

The contents of the register pair ss (any of register
pairs BC,DE,HL or SP) and the Carry Flag (C flag in the
F register) are subtracted from the contents of register
pair HL and the result is stored in HL. Operand ss is

specified as follows in the assembled object code,

Register

Pair _SS_
BC 00
DE 00
HL 10
SP 11

M CYCLES: & T STATES: 15(4,4,4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zexo;
reset otherwise

H: Set if borrow from

Bit 12; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Set
C: Set if borrow;
reset otherwise

2-236

Example:

If the contents of the HL register pair are 9999H, the
contents of register pair DE are 1111H, and the Carry
Flag is set, after the execution of

SBC HL,DE

the contents of HL will be 8887H.

SCF

Operation: CY «1
Format:
Opcode

SCF

T
0 O
]

} i i i v
110111 37
H 1 It L 1

|

Description:

‘The C flag in the T register is set,
M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected
Z: Not affected
d: Reset

?/V: Not affected
N: Reset
C: Set

2-237

2-238

SET b, (HL)

Operation: (HL), <1
Format: \
Opcode Operands .

SET b, (HL) |

1'1'0'0'1'0° 11| c8

Description:

Bit b (any bit, 7 through 0) in the memory location
addressed by the contents of register pair HL is set.
Operand b is specified as follows in the assembled
object code:

Bit Tested b

000
001
010
011
100
101
110
- 111

No LWL O

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, aifter
the execution of

SET 4, (lUL)

bit 4 in memory location 3000H will be 1. (Bit 0 in
memory location 3000il is the least significant bit,)

Operation: (IX+d)p«1

2-239

SET b, (IX+d)

Format:

Opcode Operands
SET b, (IX+d)

| R B S R S L
110 1 1 0 1 DD

1 1 1 L 1 L 1

T T 1
1 1 00 0 1 1 c8

1) 1 Jo 1 H 1

| S S N S R

- d

Description:

Bit b (any bit, 7 through 0) in the memory location
addressed by the sum of the contents of the IX register
pair (Index Register IX) and the two’s complement
integer d is set, Operand b is specified as follows in

the assembled object code:

Bit Tested

NOWLM LW~ O

M CYCLES: 6 T STATES:

-
000
001
010
011
100
101
110
111

23(4,4,3,5,4,3)

Condition Bits Affected: None

2-240

Example:

If the contents of Index Register are 2000H, after the
execution of

SET 0, (IX+3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in
memory location 2003H is.the least significant bit.)

2-241

SET b, (IY+d)

Operation: (IY+dly <1
Format:

Opcode Operands

SET b, (IY+d)

111 11 1201 FD

Description:

Bit b (any bit, 7 through 0) in the memory location
addressed by the sum of the contents of the 1Y register
pair (Index Register IY) and the two’s complecment
displacement d 1s set. Operand b is specified as
follows in the assembled object code:

Bit Tested b

000
001
018
01l
100
101
110
111

woWw s LR~ O

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected: None

2-242

Example:

If the contents of Index Register IY are 2000H, after
the execution of

SET 0, (IY+3H)

bit 0 in memory location 2003H will be 1., (Bit O in
memory location 2003H is the least significant bit.,)

2-243

SET b, r

Operation: rp <1
Format:

Opcode Operands

110010 11 CB

Description:

Bit b (any bit, 7 through 0) in register r (any of
registers B,C,D,E,H,L or A) is set, Operands b and T
are specified as follows in the assembled object code:

Bit b Register b
0 000 B 000
1 001 C 001
2 010 D 010
3 011l E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Example:

After the execution of

bit &4 in register A will be set. (Bit O is the least
significant bit.)

2-244

SLA m

Operation: m CY <« 7«0 <« O
Format:
Opcode Operands
SLA m

The operand m is any of r, (HL), (IX+d) or (IY+d), as defined for
the analogous RLC instructions. These various possible opcode-
operand combinations are specified as follows in the assembled
object code:

SLA r 110 01 0 1 1 CB

SLA (HL) 110 01 0 11 CB
6 01 0 0 1 1 O 26
SLA (IX+d) 1101 1 1 0 1 DD
11 0 01 0 1 1 CB

d

2-245

SLA (IY+d) 111 1 1 1¢0 1 FD

T T
11 001 011 CB
S T N

i + i

] 3 i
1 00 1 10 26
1 L 1

1 L

T
0 0
]

i

*r identifies registers B,C,D,E,l,L or A specified as
follows in the assembled object code field above:

Register r

000
601
010
Ccl1
100
101
111

bl el esll sl ol @ W -]

Description:

An arithmetic shift left is performed on the contents of
operand m: bit 0 is reset, the previous content of bit 0
is copied into bit 1, the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout;
the content of bit 7 is copied into the Carry Flag (C
flag in register F). Bit 0 is the least siganificant
bit,

INSTRUCTION M CYCLES T STATES

SLA T 2 8(4,4)

SLA (HL) 4 15(4,4,4,3)

SLA (IX+d) 6 23(4,4,3,5,4,3)
SLA (1Y+d) 6 23(4,4,3,5,4,3)

2-246

Condition Bits Affected:

S: Set if result 1is negative;
reset otherwise
Z: Set 1if result is zero;
reset otherwise
H: Reset
P/V: Set if parity is even;

reset otherwise
N Reset
C: Data from Bit 7

Example:

If the contents of register L are

after the execution of
SLA L

the contents of register L and the Carry Flag will be

—

2-247

SRA m

. 7—>0 -»
Operation: ‘ §

m
Format:

Opcode Operands

SRA n
The m operand is any of r, (HL), (IX+d) or (I¥+d),as
defined for the analogous RLC instructions. These

various possible opcode-operand combinations are
specified as follows in the assembled object code:

i i] i

SRA © 1’100 10 1 1] 8
| | S . ! | I
[+ i | i] i
0 01 0 1=—r—
1 | S W 1 | |
. 7 T] i IR
SRA(HL) 1 10 01 0 11 C8
. ! " 1 1 L ! |
3 1 1 1 i i i
0 01 01 110 2E
[! | J i { L
i H I i i P 1
SRA(IX+d) 1 10 1 1 1 0 1 0D
I J i ! L | 1
i i [l 1 K 11 1}
1 1 00 1 0 11 CB
i L H i ! L N
' 3 i i 1 i i
d
. | L I L J !
T T T i 1 T T
¢ 01 01 1 190 2t
t { ! 1 \ 1

2-248

SRA(I1Y+d)

) i) i LR 11
11 1 1 1 10
L L I I 1 1 i
] T i i T i T
11 0 0 1 0 1
1 1 | 1 1 ! |
i i 1 i i i i
- d
i | { 1 1 L
[] v i] i i
c 01 01 11
L 1 [1 1 L 1

FD

c3

2E

*r means registers B,C,D,E,H,L or A specified as follows
in the assembled object code field above:

Register 9
000
001
010
011l
100
101
111

PrrEmo o

An arithmetic shift right is performed on the contents
of operand m: the content of bit 7 is copied into bit 6;
the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the byte, The content
of bit O is copied into the Carry Flag (C flag in
register F), and the previous content of bit 7 is

unchanged., Bit 0 is the least significant bit,
INSTRUCTION M CYCLES T STATES

SRA r 2 8(4,4)

SRA (HL) IA 15(4,4,4,3)

SRA (IX+d) 6 23(4,4,3,5,4,3)

SRA (IY+d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity is even;

reset otherwise

N Reset

C: Data from Bit O of
source register

Example:

If the contents of the Index Register IX are 1000H,
the contents of memory location 1003H are

7. 6 5 4 3 2 1 0

after the execution of

SRA (IX+3H)

2-249

and

the contents of memory location 1003H and the Carry Flag

will be

2-250

SRL m

SR
Operation:

Format:

Opcode Operands
SRL m

The operand m is any of r, (HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions. These
various possible opcode-operand combinations are
specified as follows in the assembled object code:

i 1]

T .1 _ 1 7
SRL r 110010 1 1} CB

SRL (HL) 1’100 10 1 1| c8

00111110 3E

SRL (IX+d) llllolelllioll 0D
i i T i T] i
1 1 0 0 1 0 1 1 C8
! L L 1 | 1 A
i 13) T T i |
d

SRL (IY+d)

FD

;)

2-251

¥ i i i i

[
o 0111110 3E
L

1 1 I i 1

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code fields above:

Register r

000
001
010
0ll
100
101
111

PN EUOW

Description:

The contents of operand m are shifted right: the content
of bit 7 is copied into bit 6; the content of bit 6 is
copied into bit 5; this pattern is continued throughout
the byte, The content of bit 0 is copied into the Carry
Flag, and bit 7 is reset, Bit 0 is the lcast significant
bit.,

INSTRUCTION ¥ CYCLES T STATES

SRL (HL) 4 15¢(4,4,4,3)

SRL (IX+d) 6 23(4,4,3,5,4,3)
SRL (IY+d) 6 23(4,4,3,5,4,3)

2-252

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set 1f result is zero;
reset otherwise
d: Reset
P/V: Set if parity is even;
reset otherwise
N: Reset |
C: Data from Bit 0 of

source register

Example:

If the contents of register B are

7 6 5 4 3 2 1 0

after the execution of
SRL B
the contents of register B and the Carry Flag will be

/7 6 5 4 3 2 1 © c

2-253

SUB s

Operation: A<« A-s

Format:
Opcode Operands
SUB s

The s operand is any of r,n,(HL),(IX+d) or (I¥+d) as
defined for the analogous ADD instruction. These
various possible opcode~operand combinations are
assembled as follows in the object code:

13 i i v T t t
SUB r 1 00 1 Q=—r—
i) Il L ! L L
] 1 i) T i)
SUB n 11010 110 Do
1 I | 1 1 ! I}
i i i i] ¥]
n —
| 1 1 L i { I
i [1§ i t i 1
SUB (HL) 10010110 96
1 L | i | | J.
] T i i 13 | i
SUB (IX+d) 11 0 1 1 1 901 DD

LR 1) i i I
a -
1 I i L | H 1
i T 7T T T T
SUB (I1Y+d) 111 1 1101 FD
I 1 | A | 1 L

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code £field above:

2-254

Register T
B 000
c 001l
D 010
E oll
H 100
L 101
A 111

Description:

The s operand is subtracted from the contents of the

Accumulator, and the result is stored in the
Accumulator.

INSTRUCTION M CYCLES T STATES

SUB r 1 4

SUB n 2 7(4,3)

SUB (L) 2 7(4,3)

SUB (IX+d) 5 19(4,4,3,5,3)
SUB (1Y+d) 5 19(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if borrow from
Bit 4; reset otherwise

P/V: Set i1f overflow;

reset otherwise

N: Set

C: Set if borrow;

reset otherwise

Example:

If the Accumulator contains 29H and register D contains

11H, after the execution of
SUB D

the Accumulator will contain 18il,

Operation: A+«A®es
Format:
Opcode
XOR

Operands

S

2-255

XOR s

The s operand is any of r,n, (HL),(IX+d) or (1IY+d), as
These
various possible opcode-operand combinations are
assembled as follows in the object code:

defined for the analogous ADD instructions.,

XOR r

XOR n

XOR (HL)

XOR (IX+d)

LO0R (IY+d)

i i i i i i

1 010 l=w=—r—
| SRS SN SN SUNT N
L L L D s

11101110
! L1 1 1
L R S |

-+ n >
Lot t i 1 1
LR L T DO AN

10101 110
{_f . i
I L . DL

1 1 0 1 1 1 0 1
| S N SN SR SR |
L N D A B

1 01 01110
I VS SN B N |
L L R A

d -
(ot i 1 1
L R D I

1171 11101
| S I S S S |
L L

10

EE

AE

™
i

FD

AE

*r identifies registers 3,C,D,E,H,L or A assembled as
follows in the object code field above:

2-256

Register T
B 000
c 001
D 010
E 011 |
H 100
L 101
A 111

Description:

A logical exclusive-OR operation, bit by bit, is
performed between the byte specified by the s operand
and the byte contained in the Accumulator; the result is
stored in the Accumulator,

INSTRUCTION . M CYCLES T STATES

XOR r 1 4

XO0R n 2 7(4,3)

XOR (HL) 2 7(4,3)

XOR (IX+d) 5 19(4,4,3,5,3)
XOR (IY+d) 5 19¢(4,4,3,5,3)

Condition Bits Affected:

5 Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set

P/V: Set if parity even;

reset otherwise

N: Reset

C: Reset

Example:

If the Accumulator contains 96H (10010110), after the
execution of

XOR 5DH (Note: 5DH = 01011101)

the Accumulator will contain CBH (11001011).

APPENDIX A

ALPHABETICAL LISTING OF Z80 OPCODES

ALPHABETICAL LISTING OF Z80 OPCODES A-1
LOC 08J CODE STMT SOURCE STATEMENT

0001 *d4 APPENDIX 1

2000 8E 0002 ADC A, (HL)
2001 DD8EOS 0323 ADC A,(IX+IND)
2034 FDS8ED>S 03J4 ADC R, (IY+IND)
2007 8F 00235 ApC A,A
3008 88 0006 ADC A,3B
3209 89 0007 ADC A,C
J00RA 84 0308 ADC A,D
2003B 88 0009 ADC A,E
200C 8C 0010 ADC A,H
J00D 3D 0011 ADC A,L
J2030E CE20 23012 ADC AN
32210 ED4A 0013 ADC HL,BC
2012 ED5A 0014 ADC HL,DE
2014 EDSA 0315 ADC HL,HL
3015 ED7A 2316 ADC HL,SP
2017
3018 86 0018 ADD A, (HL)
3013 DD86I5 0319 ADD A, (IX+IND)
201°C FD86J5 0320 ADD A, (IY+IND)
201F 87 0021 ADD A,A
2020 80 0022 3DD A,B
2321 81 0323 ADD A,C
3022 82 0024 ADD A,D
2323 83 0025 ADD ALE
3024 84 0C25 ADD A,H
2025 85 0027 ADD A,L
3325 520 Jc28 ADD A N
2328 09 2223 ADD HL,BC
2028 19 0030 ADD H1l,DE
2024 29 0031 ADD HL,HL
3328 33 2032 ADD HL,S?
232C DDO3 0033 ADD IX,BC
002E DD18 0034 ADD IX,DE
2230 DD29 0035 ADD IX,IX
2232 DD3S 0035 ADD IX,SP
2234 FDCY 0037 ADD IY,BC
2036 F>19 0038 ADD IY,DE
2338 FDz3 2039 ADD 1Y, TY
2233 FD3393 2340 ADD IY,sSp
0041
203C A6 0042 AND (4L)
303D LDABOS 2043 AND (IX+IND)
3490 FDR5D> 044 AND (IY+IND)
243 A7 o045 AND A
2044 AD 0045 AND B
2245 A1 2047 END c
3046 A2 oous AND D
2047 A3 0343 AND E
2048 Ad 02590 AND d
2043 AS 0051 AND L
2044 E620 0052 AND N
2023
224¢C CB46 0054 3IT 0, (HL)
204% DDCRO545 0C55 BIT 0,(IX+IND)
2052 FDCb0O546 0056 BIT C,(IY+IND)
J05% CB47 2057 BIT O,h

2258 C342 2358 3IT 0,3

A-2

LOC

J251
335C
J05E
20620
2062
2064
2266
2354
206E
2070
2072
2074
3276
2078
007A

337¢C
207k
2082
20856
2088
20814
J208C
338k
20320
0092

2334
3336
20394
RRER
02A0
J0A2
20A4
J0A6
J0A38
JJ0AA

J0AC
J0AE
2082
JIOBS
00BS
J0BA
203C
JOBE
20C0
J0C2

J0C4
20C6
00CA
J3CE
20D0
20D2
J20D4
J3D6
J20D8

08J C3D

[SF]

CB41
CBu42
CB43
c344
CR45
CB4E
DDCBOSUE
FDCB054zZ
CBY4F
C348
CBuS
CBU4A
CBUR
CBuC
c3uD

CB56
DD”80556
FDCB0556
C357
CB59O
CB51
CB52
C853
Ca54
CB55

CB5E

CB6E
DDCBO35E
FDCBO36E
CB6F
CB68
CB869
CB5A
C363
CB6C

STMT SOURCE STATEMENT

0059
0060
0061
0352
0363
0064
0065
0066
00567
cd58
0069
0070
0071
0372
0073
0074
0075
0076
0077
0078
0079
00890
0081
0082
0083
0084
0085
2086
2087
2088
3089
00930
00391
0092
0093
0094
0335
03356
0397
0098
0093
3100
0101
0102
0103
0104
3105
01086
0137
0128
0139
0110
0111
0112
0113
0114
0115
2116

RIT
BIT
B8IT
BIT
RIT
BIT
8IT
3IT
RIT
3IT
31T
BIT
8IT
BIT
BIT

BIT
RIT
BIT
BIT

BIT

8IT
BIT
BIT
51T
2IT

31T
31T
3IT
31T
BIT
BIT
BIT
21T
BIT

HL)
IX+IND)
IY+IND)

~ - - - ~ - -

HXOOUOQOWwE N~~~ mEon

’

QST QU S U QP I W G G W o i & Y o I & BN &]

- - - “~ - - -

2, (HL)
2,(IX+IND)
2,(IY+IND)

NNNNONDNN
N Y N N N NN
o w s

3,(HL)
3,(IX+IND)
3,(IY+IND)

Wwwwwww
L Y R
[auiie o o3 B WA @ Jko v I 2]

4, (HL)
(IX+IND)
IY+IND)

(
3
B
c
D
E
H

25235&553

L S I N T T D

L

HL)
IX+IND)
IY+IND)

WLyt v n
SN N N YN N N NS

el NN @R vEE_Fe N NS

LoC

JJDA

J0DC
J0DE
J0E2
J0ES
J20EZ8
JJzA
JJ0EC
J0ZE
2080
JIF2

JO0F4
3J0FS6
JOFA
JOFE
2132
3132
2104
2106
2108
2131

210¢C
310F
2112
3115
2118
J115B
311E
2121
2124

2127

2128
2123
212C
212F
3130
2131
2132
2133
2134
2135
J136

0138
21347
213C
J13E
2140
2141

2142

03J COD=
C35D

c376
DDCBJ2575
FDCBO375
ca77
CB79
CB71
c372
c373
CB74
C375

CB7E
DDCBO57Z
FDCBJS78
Ca37F
2378
C373
CB7A
cB78
c37c2
C37D

DC8805
FCB8805
D4883>
CDRBBOS
Cu48805
F48805
EC8805
E4880>
cc889ds

EDAS
ED39
EDA1
EDR1
2F

27

STMT SOURCE STATEM:ZNT

2117
2118
0119
0120
0121
2122
0123
2124
2125
01256
0127
2128
2129
0130
0131
0132
0133
0134
0135
2136
0137
0138
0133
3140
0141
0142
2143
0144
0145
01456
0147

21438 -

0149
0159
0151
3152
0153
0154
0155
0158
0157
01E8
0139
21560
0161
0162
0162
2164
0165
0156
0187
0168
0165
0170
0171
0172
0173
0174

e

5,L

5,(HL)
5,(IX+IND)
5,(IY+IND)

-

NN OOy OO
N E MmO W

L T N B)

7,(HL)
7,(IX+IND)
7,(IY+IND)
7,A

7,3

7,7

7,D

~N

[amdite SR L]

’
F
’

C,NN
Y,NN
NT,NN
NN
NZ,NN
P,NN
PE,NN
PJ,NN
Z,NN

(4L)
(IX+IND)
(IY+IND)

ZH oMo 0w

(HL)

A-4
Loz

7143
3144
J143
D144
2148
214°C
214D
J214%
I14F
2150
J151
2152
2154
2155
2157

0159

31583

215C
315D
215F%
3161
2162
3163

2164

2165
2157
2169

2168
216D
216F
2171
3173
2175
3177
2179

3178
317C
217F
3182
2183
2184
2185
2186
2187
3188
3183
J18A
2183
218D

082

(@]
w
(o]
(83

DD3505
FD3505
3D

05

a8

0D

15
13
1D
25
28
DD23
FD238

33

E3
Dbz 3
FDE3
08
EB

D3
75

ED46
ED56
ED5SE

ED78
D320
D4
Epusg
ED50
ED58
ED6D
ED68

34
DD3405
FD3405
3C

J4

03

oC

14

13

1C

24

23
DD23
FD23

(V)]
4
S
3

2175
31756
0177
0178
2179
0130
0181
0132
3133
2184
0185
0185
3187
2188
0189
3130
2131
0132
2193
0134
2185
21956
0197
0138
0133
0200
0201
2202
3233
0234
0205
0235
2227
2208
0209
0210
0211
0212
0213
2214
2215
0216
0217
0218
2219
3220
2221
0222
0223
0224
0225
2225
0227
0228
0223
2230
2231
0232

SCURCE STATEMENT
DEC (IX+IND)
DEC (IY+IND)
DEC A
DEC B
DEC BC
DEC c
DEC D
DEC DE
DEC E
DET i
DEC HL
DEC IX
DEC IY
DEC L
OEC SP

’ 0l
DINZ DIS
cl
B (s?2),4HL
=X (sP),IX
=X (s?),1IY
I AF,AF"
=) DE,HL
XX

, HALT

' M 0]
I 1
I¥ 2
IN A,(C)
IN A,(N)
IN B,(C
IN 2,8
IX D,(C)
IN £,(C
IN H,(C
IN L,(2)
INC (HL)
INC (IX+IND)
INC (IY+IND)
INC A
INC B
INC BC
INT c
INC D
INC DE
INC E
INC d
INC HL
INC IX
INC IY

LOoC

J18F
21990

2191
J193
2185
3197

2183
J19A
219C
219E
J1R1
J1A4
01A7
J1AA
J1AD
31B2
J1B3
21356

2183
J1BB
J1BD
J18F
31C1

2123
2124
21C5
21C6
2127
3128
2123
01CA
J1CB
J1ZC
J1CE
21D1
31D4
21D7
21DA
210D
J1EQ
J1E3

2187
J1EA
J1ED
J1F0
J1F3
J1F6
21F9
J1FC

2200
2233
2207

OBJ CODE

2C
33

EDAA
EDBA
EDA2
ED32

£E9
DDE3
FDES
DA88O5
FA88975
D28805
C38805
C28805
F2880>
EA8805
£28805
CAB8805

382E
182E
302E
202E
232E

02

12

77

70

71

72

73

74

75
35620
DD7735
BDD7005
DD7105
DD7235
DD7325
DD74035
DD7535
DD35603520

FD7705
FD70053
FD7105
FD7205
FD7305
FD7405
FD7535
¥D353520

328805
ED438325
£D5383)55

STMT SOURCE STATEMENT

2233
0234
0235
0235
2237
0238
0239
0240
0241
0242
0243
J244
0245
0246
0247
0248
249
0250
0251
0252
2253
0254
0255
0258
0257
0258
0259
2250
0251
0262
0263
2284
3255
0256
0267
2248
12589
0279
0271
0272
3273
0274
0275
06276
3277
3278
G279
0280
0281
0282
2283
0284
0285
0286
3287
0288
0289
0290

.
’

.
’

.
[4

INC
INC

IND
INDR
INI
INIR

JP
JP
JP
Jr
Jp
Jp
JP
Jp
JP
JP
Jp
Jp

Jk
JR
JR
JR
JR

LD
LD
LD
LD

N
1%

LD
LD
LD
LD
LD
LD
LD

T
Es]

LS

,
LD

LD
LD

T
L

LD
LD

2
1

LD
LD
LD
LD
LC

LD
LD

L
SP

(HL)
(IX)
(1Y)
C,NN
M,NN
NZ,NN
NN
NZ,NN
D,NN
PE,NN
PO, NN
Z,NN

c,DIS
DIS
NC,DIS
NZ,DIS
z,DIS

(BC),A
(DEJ ,A
(HL)>,A
(4L),B
(HL)Y ,C
(HL),D
(41L) ,E
(4L) ,H
(HL),L
(HL) , N
(IX+IND),R
(IX+IND),3
(IX+IND),C
(IX+IND),D
(IX+IND),E
(IX+IND),H
(IX+IND),L
(IX+IND),N

(IY+IND),A
(IY+IND),B
(IY+IND),C
(IY+IND),D
(IY+IND),E
(IY+IND),H
(IY+IND),L
(IY+IND),N

(NN),A
(NN),BC
(NN),DE

L2C

2208
220E
0212
7216

3214
221B
2212
J21D
3220
2223
2225
2227
2228
2229
J22A
J228
222C
222¢E
222F
2231

3233
2234
2237
D231
2238
223C
223D
J23E
223F
22490
J241

3243
2247

J244
2243
J24E
2251
2252
2253
3254
2255
3255
3257
2258

2254
3258
J25E
J2561
J262
J263
2264

)255
2266

CBJ CODE

228805

DD228335
FD2283035
ED738305

04

14

72
DD7EQ5
FO7EOS
348805
7F

78

79

74

73

7C
ED57
7D
3E20
ED5F

46
DD4605
FDOu6925
47

49

41

L2

43

44

45
05290

ED4RB8305
218805

4z
DD4EOS
FDUEODS
ur

43

49

43

43

4C

40
0220

55
DD3635
FD5605
57
52
51
52
53
54

STMT SOURCE STATEMENT

2231
0232
0293
0294
3285
0296
0297
0238
0299
0320
0301
2322
0323
03204
0305
0305
0307
0328
0309
0310
0311
0312
0313
0314
0315
0315
0317
0318
2319
0320
0321
0322
0323
2324
0325
0326
0327
0328
2329
0330
0331
0332
0333
0334
2335
2335
0337
0338
0339
2342
0341
0342
0343
J34y
2345
0346
0347
0348

LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

Lo
LD
LD
LD
LD
LD
LD
LD
LD
i)
LD

[l
[lw]

[l e S o o S SR S Y o
DOV UTCOUUY

o
O

Eb b
EACECACRS R

o
U U W

(NN),HL
(NN, IXK
(NN),IY
(NN),SP

e

(BC)
(DE)
(HL)
(IX+IND)
(IY+IND)
NND

- - - - . 0w - - ~ - ~ - - - - -

feclie i i B e o e e e _ e S e o
WEACHIMmMO O W ~

B,(HL)
B,(IX+IND)
B,(IY+IND)

~

o wwoww o
ZtnEmoawe

- - - LY - -

BZ, (iN)
3C, NN

C,(HL)
C,(IX+IND)
C,(IY+IND)
C,A

z,8

c,C

c,D

C,E

C,H

c,L

Z,N

D,(HL)
D,(IX+IND)
D,(IY+IND)

’

vl wRwRwileN o)
S o) B R I ¢ el

’
’
’
’
14

L3C 033 CODE STMT SOURCE STATEMENT

3287 55 0349 LD D,L
2268 1620 0350 LD D,N
0351 ;
J285A ED5B8335 0352 LD DE, (NN)
J25E 1188053 2353 LD DE, NN
¢354 ;
3271 5E 3355 LD E, (HL)
2272 DD5EQ5S 3356 LD E,(IX+IND)
3275 FD5EQ05 0357 1D E,(IY+IND)
2278 5F 0358 1D E,A
2279 58 0353 LD E,B
J27A 53 0360 LD E,C
3278 5A 0361 LD E,D
227C 58 03562 LD E,B
2270 5C 0353 LD E,H
J27E 5D 0354 LD E,L
J27F 1220 0365 LD E,N
0366 ;
3281 65 2357) H,(HL)
2282 DD563> 0358 LD H,(IX+IND)
2285 FD56935 0369 LD H,(IT+IND)
02388 67 0373 L H,A
3283 60 2371 D H,3
2284 61 3372 LD /<
228B 62 0373 LD H,D
2282 63 0374 LD H,E
223D 64 0375 LD H,H
J28E 65 0376 Lo H,L
028F 2520 0377 LD H,N
3378 ;
2291 2348803 0379 LD EL, (NN)
2294 218805 0380 L2 HL,NN
0381
3237 EDu7 0382 LD I,A
2333
2293 DD2A8305 0384 LD IX,(NN)
228D DD218335 0385 LC I{,NN
2386
J2A1 FD2A8335 2387 Lo IY,(NN)
J22A5 FD218325 0388 L IY,NN
0389 ;
3243 52 03230 Lo L,(HL)
J2RRA DDBEDS 03381 L L,(IX+IND)
22ZAD FD6EDS 3392 LD L,{IY+IND)
2280 5F 33393 o L,A
5231 58 0394 LD L,8
2282 539 0335 Lt L,C
22383 6A 3336 Lt L,D
Jzs4 68 0397 LD L,z
3235 5C 23398 LD L,H
2285 6D 2338 LD L,L
22B7 2220 0ud0 D L,N
2401
0283 EDUF 0402 LD R,A
oud3 ;
2238 £ED73888)23> C40u 1D SP, (NN)
J28F F3 o405 1D SP,HL

2220 DDF3 Qusce LD sp,IX

A-8
L3Z

J2C2
2224

2227
0223
22CB
322D

J2CF
32D1

J2D2
32D3
22D5
J2D3
J2DA
J2DB
J2DC
J2DD
J2DE
02DF
J2ED

J2E2
02E4

J2ES
JZ2ES8
J2ZA
J22EC
J2EE
J2FQ
J2F2
J2F 4

22F5
J2F8

J2FA
J2FR
Q2FC
J2FD
J2FE
2303
2302
J303
2304
3305
2335
2308

2304
330°C
3310
2314
2316
J318

03J C0D%

FDF3
318805

EDAS
ED38
EDAO
ED30

EDuy
00

86
DDB6053
FDB6J5
37

BO

31

B2

B3

B4

B5
F620

ED33B
ED33

ED73
ED41
ED49
ED51
ED59
EDS1
ED69
D320

EDAB
EDA3

F1
1
D1
E1
DDE1
FOE1
F5
C5
D5
£5
DDES
FDES

€386
DDCBO335
FDCBJ536
c387
CB8o
C381

STHT

0ud7
0408
2409
0410
o411
0412
o413
414
0415
016
0417
0418
0419
0420
0421
0u22
0423
0424
0425
o426
0427
0428
0429
2430
0L31
0432
9433
o4 3y
o435
0L36
0437
0u38
0439
0440
0441
ouy2
0443
ouLY
o445
2445
0uu7
ouys
ouL9
0450
0451
0452
0453
0us5y
0455
0456
0457
0458
0459
0U50
0461
0462
0U63
046y

SOURCE STATZMENT

LD
LD

LLD
LDDR
LDI
LDIR

NES

NOP

OR
OR
CR
OR
OR
2R
OR
OR
OR
OR
OR

o0T
0UT
ouT
oUT
ouT
oU1T
ouT
oUT

oUTD
OUTI

pOP
PoP
POP
POP
POP
POP
?PUSH
PUSH
PUSH
PUSH
PUSH

J
[en]
2]
s

225 b Rs ¥ IR S R 6P o)

51 {73 71 003 7 {1
Vi vt v vt

Se,IY
SP, NN
(HL)
(IX+IND)
(IY+IND)
A

R

D

E

H

L

N
(2),A
(Z),B
(<),C
(<),D
(C),E
(2),H
(3),L
(N),A
AF

3C

DE

HL

IX

1Y

AF

3z

DE

HL

IX

IY
0,(HL)

0,(IX+IND)
0,(IY+IND)

O OO
«y w =

’
’
’

L0C 03J CJDZ STMT SOURCE STATEMENT
23114 €382 Jus55 RES 2,D
231C C383 0466 RES 0,E
J31E CB84 ouge? RES 0,H
2329 cB85 Ju68 RES 0,L
ous3
2322 C38E 0470 RES 1, (HL)
d324 DDCB0O53%E 0471 RES 1,(IX+IND)
2328 FDZBO33% 0472 RES 1,(IY+IND)
J32¢C CB8F o473 RES3 1,7
J32E CBS8 0474 XFS 1,B
2330 CB89 0475 RES 1,C
2332 CB8A 0475 RES 1,D
J334 €383 2477 RES 1,E
3336 ‘C88&C o478 RES 1,H
2338 CB8D 0479 RES 1,L
0480 ;
J33A CB3I5 2481 RES 2,(HL)
233C DDCB0535 2482 RES 2,(IX+IND)
0340 FDCR0O535 2483 RES 2,(IY+IND)
J344 C397 ou8y RES 2,A
2345 £390 0485 RES 2,8
2348 €391 ou8e RES 2,C
J3LA €392 o487 RES 2,D
234°C C393 Juss RES 2,E
J34E cC394u o489 RES 2,H
2350 €335 04390 RES 2,L
o431
2352 CB3E 0492 RES 3, (HL)
2354 DDCBJ53= 0493 RES 3,(IX+IND)
2358 FDCBI53%T 494 RES3 3,(IY+IND)
235C CBYF Q435 RES 3,A
D35E CBJ8 0436 RES 3,8
2350 €399 ou97 RES 3,C
2362 CBI3A 0498 RES 3,D
2364 C398 0499 RES 3,E
0366 C39¢C 0500 RES 3,4
2368 C38D 0501 RES 3,1
3502 ;
2361 CBAS6 05323 RES 4, (HL)
236C DDCBOSAS 0504 RES 4, (IX+IND)
23790 FDCBOS5AS 0505 RES 4,(IY+IND)
2374 C3A7 0506 2ES 4,4
2376 CBAD 3507 RES 4,B
2378 CBA1 0508 RES 4,C
3374 C3A2 0509 ZES 4,D
2372 CBA3 3510 RES 4,E
237EF CBAy 0511 RES 4,4
2380 CBAS 0512 RES 4,L
0513
2382 CBAE 0514 RES 5,(EL)
2384 DDCBO0S5AE 0515 RES 5,(IX+IND)
2388 FDCBOS3AE 0516 RES 5,(IY+IND)
238C CBAF 0517 RES 5,A
J38E C3A8 0518 RES 5,8
2392 CBA9 0519 RES 5,C
0392 CBAA 0520 RES 5,D
334 CBAB 3521 RES 5,E
2335 CBAC 2522 RES 5,H4)

A-10
Loc 0BJ CODE STMT SCURCE STATEMENT

2398 CBAD 0523 RES 5,L
3524 ;
33594 CBB6 0525 RES 6,(4L)
233C DDC30535 052¢ RES €,(IX+IND)
340 FDZBO335 0527 RES 6,(IY+IND)
J3A4 C3B7 . 0528 RES 5,A
J3A6 Cs80 0529 RES 6,8
J3A8 C381 9530 RES £,C
PELY: C382 0531 RES 5,D
J23AC C3B3 0532 RES 6,E
JD3AE CB34 0533 RES 6,4
J3BD €335 2534 RES 6,1
0535 ;
2382 CBBE 0535 RES 7, (dL)
2334 DDCT8053¢E 3537 RES 7,(IX+IND)
J2BS FDCBJ53Z 3538 RES 7,(IY+IND)
J238C C3BF 0539 RES 7,A
338k C3B8 0540 KES 7,8
2320 C339 0541 RES 7,C
23C2 CBBA 0542 RES 7,D
23C4 C3BB 0543 RES 7,8
2326 C3BC 544 RES 7,H
33C8 CB3D 0545 RZS 7,L
0546 ;
J3CA o) 0547 RET
J3C8B D38 o5u8 RET C
23CC F8 d549 RET 1
232D DO 05590 RET NC
03CE co 0551 RET NZ
J3CF FO 0552 RET P
J3D0 ES8 2553 RET— PE
23D1 EQ 0554) RET P2
33D2 c8 0555 i RET Z
0556 -5
J3D3 EDUD 2557 RZTI
J3D5 D45 3558 RETN
0559 ;
23D7 C316 0550 RL (d1)
J3D3 DDCBJ315 0551 RL (IX+IND)
d3DD FDCB33156 0562 RL (IY+IND)
O3E1 c317 0563 RL A
233 C310 J564 RL B
JI3E5 CB11 0565 RL c
O3E7 CB12 0566 RL D
J3ES CB13 0567 RL L
J3EB C314 2568 RL H
J3ED €815 2569 RL L
0570
J3EF 17 0571 RLA
0572 ;
J3FD £30s6 0573 RLC (HL)
J3F2 DDCB03J35 0574 RLC (IX+IND)
J3F6 FDCBO505 0575 RLC (IY+IND)
J3FA €307 0576 RLC A
J3FC CBOJ 0577 RLC B
J3FE CB301 3578 RLZ o
Ju400 - CBO2 0579 RLC D
J402 C303 3580 RLC E

LocC

ouou
0406

o408
J4089

J408B
JuoD
2411
2415
d417
o419
du1s
J41D
JU1F
421

2423

Ju24
o425
Ju214
Jy2%
J430
du432
J434
Ju3s
Ju3s
J43A

Ju3c
43D

JU43F
J440
441
J442
Juus
444
2445
J445

447
Juus
Q448
JL44E
JLGF
JU52
J451
J452
2453
J454
2455

457
2459

ED6F

CB1E
DDCBOS51E
FDCB0O31E
CB1F
CB18
CB19
C31A
C813
C31C
CB1D

1F

CBOE
DDCBJ50E
FDCBI3JE
CBOF
CBO8
C303
CB0A
cBOB
csocC
C30D

0

(23]

ED67?

c7
CF
D7
DF
E7
EF
E7
FF

9k
DDSEDJS
FDIEQS
9F

g8

99

9A

93

9C

3D
D20

EDLZ
ED52

STMT SOURCE STATEMENT

0581
0582
0583
0584
0585
0586
0587
0588
0589
3590
05391
0592
0593
3594
0585
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
2506
0507
0608
0609
25610
0511
08612
0613
0614
0515
2616
0617
0618
0619
3620
0621
0622
0623
0624
0625
2526
3527
0628
0623
06390
5631
0632
0633
25634
2635
0636
0637
0638

.
r

.
’

.
’

RLD

RR
RR
RR
RR
RR
RR
RR
RR
RR
RR

REKC
RRC
RRC
2RC
RRC
RRC
RRC
IRC
RRC
RRC

RRCA

RRD

(HL)
(IX+IND)
(IY+IND)

XMoo Ow

(HL)
(IX+IND)
(IY+IND)

Hnmo 0w

0

08H
10H
18H
20H
284
324
33H

R, (HL)
A,(IX+IND)
A,(IY+IND)

~
x

Z DO O w

~ - - ~ - ~ ~

~

X
[l
~
o
[

jasd
[l
\w)
™

’

A-11

A-12
LoC

2458
45D

JU5F

460
o462
Ju66
JUbA
Ju6C
J46E
Ju79
Ju72
aL74
J476

478
Ju7A
J47E
482
J484
0486
Ju88
Jus8Ah
ou48C
Ju8E

J432
Ju92
J496
J49A
2437C
OU4SE
Ou4AO
JUA2
JU4AY
JUAS6

o428
JUAA
JURE
482
JuB4Y
J436
J4B8
C4BA
duBC
J4BE

J4C0
Ju4C2
J4C6
Juch
Jucc
JuCE
24D
JuD2
Jubu

0BJ CODE

ED62
ED72

37

CBC6
DDCBO5C6
FDCBO5C6
CBC7
CBCO
cBC1
CBC2
CBC3
CBC4
C3C5

CBCE
DDCBOS5CE
FDCBOSCE
CBCF
Cc3cCs
CBC9
CBCA
C3CB
cacc
CBCD

CBD6
DDCBO3DS
FDCBO5D5
C8D7
CBDO
C3D1
CBD2
CBD3
C304
C3D5

CBDE
DDCBO35DZ
FDCBJ3D%
CBDF
CBD8
CBDS
CBDA
CBDB
CBDC
CBDD

C3E5

STMT SOURCE

0639
0640
0641
2642
3643
o644
0645
06456
o647
o648
0543
0650
0651
0652
0653
0654
0655
0656
0657
0558
3659
06690
0661
0652
0663
0654
0655
06566
0667
0668
05669
0570
0671
0672
2673
0674
05675
0676
0677
0678
2673
2680
0681
25682
0683
0684
0685
0686
2587
3688
0689
0699
26391
0692
0693
0634
2685
0696

.
’

.
’

STATEMENT

SRZ HL,HL

SBC HL,SP

SCF

SET 0,(HL)

SET 0,(IX+IND)

SET 0,(IY+IND)

SET O,A

SET 0,B

SET 0,C

SET 2,D

SET 2,E

SET 0,4

SET 0,L

SET 1,(EL)

SET 1,(IX+IND)
SET 1,(IY+IND)
=T 1,A

SET 1,8

SET 1,C

SET 1,D

SET 1,E

SET 1,H

SET 1,1

SET 2, (dL)

SET 2,(IX+IND)
SET 2,(IY+IND)
SET 2,A

SET 2,B

SET 2,C

SET 2,D

SET 2,E

SET 2,4

SET 2,L

3t 3,(HL)

SET 3,(IX+IND)

SET 3,(IY+IND)

SET 3,A

SET 3,8

SeT 3,C

SET 3,D

SET 3,E

SET 3,4

SET 3,1

SET 4, (HL)

SET 4,(IX+IND)
SET 4,(IY+IND)
SeT 4,A

SET 4,B

SET 4,C

SET 4,D

SET u,kB

SET 4,H

LoZ
Juds6

J4D8
J4DA
J4DE
JUE2
JUEY
JLEG
J4ES
JU4EA
J4EC
JUEE

JUFO
J4F2
J4FS
J4FA
J4FrC
JU4FE
35020
3502
504
3506

3508
J50A
JS0E
2512
2514
515
J518
J51A
351C
231E

3520
3522
2526
2524
052C
J52E
3530
3532
3534
2335

3538
J53A
J532
J542
544
Q546
548
J54A
254C
JO54E

3550

03J CZODE

CBES

CBEE
DDCBOS5EE
FDCBOSEE
CBEF
CBES
CBE3
CBEA
CBEB
CBEC
CBED

CBFS
DDCBOSF6
FDCBOSF6
C3F7
C3FO0
CBF1
CBF2
CBF3
CBFY
C3F5

CBFE
DDCBOSFE
FDCBOSFZE
CBFF
CBF8
C3r9
CBFA
CBFB
CBFC
CBFD

CcB26
DDCB0>25
FDCBO525
cB27
€320
CB21
CB22
c323
c324
C325

C32E
DDCBOS52E
FDCB052=
CB2F
CB28
C829
cB2A
C328
CR2C
CB2D

CBR3E

A-13
STMT SOURCE STATEMENT

0637 SET 4,L
0698 ;
2699 SET 5,(HL)
07090 SET 5,(IX+IND)
0701 SET 5,(IY+IND)
0702 SET 5,A
0703 SET 5,B
07304 SET 5,C
0705 SET 5,D
0706 SET 5,E
0737 SET 5,H
0708 SET 5,L
0739
0710 SET 6,(HL)
0711 SET 5,(IX+IND)
0712 SET 5,(IY+IND)
0713 SET 6,A
2714 SET 6,B
2715 SET 6,C
2716 SET 6,D
0717 SET 5,E
2718 SET 5,H
0719 SET 6,L
0720 ;
0721 SET 7, (HL)
0722 SET 7,(IX+IND)
2723 SET 7,(IY+IND)
0724 SET 7,7
0725 SET 7,B
0726 SET 7,C
0727 SET 7,D
0728 SET 7,E
0729 SET 7,H
0730 SET 7,L
0731
0732 SLA (HL)
2733 SLA (IX+IND)
0734 SLA (IY+IND)
0735 SLA A
0736 SLA B
0737 SLA C
0738 SLA D
0739 SLA E
07490 SLA H
0741 SLA L
0742
0743 SRA (HL)
0744 SRA (IX+IND)
3745 SRA (IY+IND)
27456 SRA A
0747 SRA B
0748 SRA C
3749 SRA D
2750 SRA E
0751 SRA H
0752 SRA L
0753
2754 SRL (dL)

A-14
Loc

J552
J356
0554
J255C
J55E
2560
J562
2564
J566

3558
2563
J36C
I56F
2570
2571
3572
2573
2374
2875
1576

3578
2579
I57C
J57F
2580
0581
2382
3583
JE84
2585
3585

3588

J58A
588
J58D

08J CODE

DDCBJ53E
FDCBO53E
C33F
C338
CB38
C33A
CB3B
CB3C
C83D

96
DD9605
FD9605
97

99

91

92

93

94

95
D620

AE
DDAEO>S
FDAEDS
AF

A8

A3

AA

AB

AC

AD
EE20

00
0000

STMT SOURCE STATEMENT

0755
3756
0757
0758
0739
0760
0751
0762
0763
2764
0765
0766
0757
07568
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
2780
0781
0782
0783
0734
0785
0786
0787
0788
0789
0780
0781
307382
0793
0734
0785
07396
0737
0738
0799

NN:
IND:

DIS:

k1:
R2:
R3:
Ru:
R5:

SRL
SRL
SREL
SRL
SRL
SRL
SRL
SRL
SRL

5U3
SU3
5UB
SUB
SUB
SUB
SUB
SUb
SUR
SU3
SURB

XOR
¥OR
XOR
XOR
XOR
XOR
XOR
XOR
KOR
XOR
XOR

DEFS
EQU
QU
EQU

DEFB
DEFW
DEFS
DEFL
EQU
END

(IX+IND)
(IY+IND)

Hmimo 0w

(HL)
(IX+IND)
(IY+IND)

ZHnmnmonm e

(HL)
(IX+IND)
(IY+IND)

2o 0w

APPENDIX B

MOSTEK ASSEMBLER STANDARD PSEUDO-OPS

APPENDIX B

MOSTEK ASSEMBLER STANDARD PSEUDO-OPS

B-1. INTRODUCTION.

B-2. The following pseudo-ops are standard for Z80 assemblers from
MOSTEK. Note that other pseudo-ops may be allowed depending on the
features of a particular assembler. For example, additional pseudo-ops
may be required to handle conditional assembly, global symbols, and
macros.

DEFB n

Define byte of memory.

Operation: (PC) < n (static)

Format
Opcode Operands Machine Code
DEFB n < n >

(no execution time)

Description: This pseudo~op reserves and defines one byte of memory
to contain the value n.

Example:
DEFB OAH

causes the current memory location to be defined with the value OAH.

label

label DEFL nn

Define 'label' to have the value nn.

Operation: label <~ nn

Format:
Opcode Operand
DEFL nn

(no execution time, no machine code)

Description: This pseudo-op assigns the value nn to the label
which appears in the label field. The same label
can be defined any number of times in a program
using this pseudo-op.

Example:

LAB4: DEFL 050AH

The label 'LAB4' is defined to have the value 050AH.

DEFM 's!

Define message
Operation: (pCc) =« Sl
(PC+1) <« S,

(PC+2) <« S3

where s, is the first ASCII character in string s, |
Sy is t%e second ASCII character, etc. |

Format:
Opcode Operand Machine code
DEFM 's! Sy

2

°3

(no execution time)

Description: This pseudo-op reserves and defines sequential bytes of
memory to contain ASCII equivalents of the characters in

the string s.
Example:

DEFM 'ABC'

will reserve 3 bytes of memory and cause them to be loaded
with 41H,42H,43H, respectively.

DEFS nn

Define storage

Operation: (PC) <« (PC) + nn (static)
Format

Opcode Operand Machine code
DEFS nn

(no execution time)

Description: This pseudo-op causes nn bytes of memory to be defined
as storage. In the object module, these bytes are not
loaded. In a load (binary) module, these bytes are
loaded with meaningless data.

Example:

DEFS 40D

This causes 40 (decimal) memory locations to be defined
as storage and skipped in the object module.

DEFW nn

Define word of memory

Operation:

Format

Opcode

DEFW

Description:

Example:

(PC) <« nn + 1

(PC+1)+« nn (static)
Operand Machine code
nn nn + 1 (Lower byte)
nn (Upper byte)

This pseudo-op reserves and defines two bytes of memory.
The first byte is defined to contain the least signifi-
cant byte of the operand nn. The next byte is defined

to contain the most significant byte of the operand nn.

DEFW 0AOOH

will define the current memory location to contain OCH
and the next memory location to contain OAH.

B-7

END s

End of assembly

Operation: terminates current assembler pass.

Format
Opcode Operand
END s

(no execution time, no machine code)

Description: This pseudo-op terminates the current assember pass.
The operand s is optional and is an expression which
defines the starting execution address of the program
being assembled. The value of s is entered in the
end-of-file record in the object output of the assembler.

Example:
END OAAH

terminates the current assembler pass and causes 0AAH
to be defined as the starting address of the program.

B-8

label EQU nn

Equate 'label' to value nn.

Operation: 1label nn

Format:
Opcode Operand
label EQU nn

(110 execution time, no machine code)

Description: This pseudo-op assigns the value nn to the label
which appears in the label field. The label can
only appear once in the label field in a program
using this pseudo-op.

Example:

LAB4: EQU O5H

The label 'LAB4' is defined to have the value O5H.

APPENDIX C

MOSTEK STANDARD Z80 OBJECT CODE FORMAT

Cc-1

APPENDIX C

MOSTEK STANDARD Z80 OBJECT OUTPUT DEFINITION

C-1. INTRODUCTION.

C-2. Each record of an object module begins with a delimiter (colon
or dollar sign) and ends with carriage return and line feed. A colon
(:) is used for data records and end of file record. A dollar sign ($)
is used for records containing relocation information and linking in-
formation. An Intel loader will ignore such information and allow
loading of non-relocatable, non-linkable programs. All information is
in ASCII. :

C-3. Each record is identified as a type . The type appears in the
8th and 9th bytes of the record and can take the following values:

00 - data record

01 - end-of-file

02 - internal symbol

03 - external symbol

04 - relocation information
05 - module definition

C-4. DATA RECORD FORMAT (TYPE 00).

Byte 1 Colon (:) delimiter

2-3 ‘Number of binary bytes of data in this record. The maximum
is 32 binary bytes (64 ASCII bytes).

4=5 Most significant byte of the start address of data.
6-7 Least significant byte of start address of data.
8-9 ASCII zeros. This is the 'record type" for data.
10- Data bytes.

Last two bytes - Checksum of all bytes except the delimiter, carriage
return, and line feed. The checksum is the negative of the binary
sum of all bytes in the record.

CRLF Carriage return, line feed.

C-5. END-OF-FILE RECORD (TYPE 01).

Byte 1 Colon (:) delimiter.

2-3 ASCII zeros.

c-2

4~5 Most significant byte of the transfer address of the program.
This transfer address appears as an argument in the 'END' pseudo-op of
a program. It represents the starting execution address of the program.

6-7 Least significant byte of the transfer address.
8-9 Record type Ol.

10-11 Checksum.

CRLF Carriage return, line feed.

C-6. INTERNAL SYMBOL RECORD (TYPE 02).

Byte 1 Dollar sign ($) delimiter.

2-7 Up to 6 ASCII characters of the internal symbol name. The
name is left justified, blank filled.

8-9 Record type 02.

10-13 Address of the internal symbol, most significant byte first.

14-15 Binary checksum. Note that the ASCII letters of the symbol

are converted to binary before th checksum is calculated. Binary

conversion is done without regard to errors.

CRLF Carriage return, line feed.

C~-7. EXTERNAL SYMBOL RECORD (TYPE 03).

Byte 1 Dollar sign ($) delimiter.

2-7 Up to 6 ASCII characters of the external symbol name. The
name is left justified, blank filled.

8-9 Record type 03.

10-13 Last address which uses the external symbol. This is the
start of a link list in the object data records which is
described below. The most significant byte is first.

14-15 Binary checksum.

CRLF Carriage return, line feed.

C-8. The ASMB-80 Assembler outputs the external symbol name and the

last address in the program where the symbol is used. The data records

which follow contain a link list pointing to all occurrences of that
symbol in the object code.

1. The external symbol record shows the symbol ('LAB') and the last
location in the program which uses the sumbol (212AH).

2. The object code at 212AH has a pointer which shows where the
previous reference to the external symbol occurred (200FH).

3. This backward reference list continues until a terminator ends the
list. This terminator is OFFFFH.

This method is easy to generate and decode. It has the advantage of

reducing the number of bytes of object code needed to define all
external references in a program.

C-9. RELOCATING INFORMATION RECORD (TYPE 04)

Both the internally referenced relocatable addresses and the elements
of the eternal global reference linked list will be defined in these
records.

Byte 1 Dollar sign ($) delimiter.

2-3 Number of sets of 2 ASCII characters, where 2 sets define
an address.

4-7 ASCII zeros.

8-9 Record type 04.

10- %ddresses which must be relocated, most significant byte
irst.

Last two bytes - Binary checksum.

CRLF Carriage return, line feed.

C-10. MODULE DEFINITION RECORD (TYPE 05).

This record has the name of the module (defined by the 'NAME' pseudo-op)
and a loading information flag byte. The flag byte is determined by
the 'PSECT' pseudo-op.

Byte 1 Dollar sign ($8) delimiter.

2-7 Name of the module, left justified, blank filled.

8-9 Record type 05.

10-11 Flag byte. When converted to binary, the flag byte is

defined as follows:

Bit 0 - 0 for absolute assemblies
1 for relocatable assemblies

C-4

12-13

CRLF

Binary checksum.

Carriage return, line feed.

APPENDIX D

REFERENCE TABLES

TABLE D-1. Hexadecimal to Decimal Conversion Table

HEXADECIMAL COLUMNS
B <Y 4 3 2 1
HEX » DEC | HEX = DEC [HEX = DEC {HEX = DEC|HEX=DEC|HEX= DEC
[) [[) [[o o [} 0 ofo [
1 1048576 1 69536 1 4,096 1 256) 611 1
2 2,097152 2 131072 2 8192 2 512 2 3212 2
3 3.145.728 3 196,608 3 12288 3 768 3 a8 | 3 3
4 4,194 304 4 262.144 4 16.384 4 1,024 4 6s | 4 4
5 52423880 5 327.680 5 20480 |5 1280 s 805 5
6 6291456 6 191.216 6 24576 | 6 1536 6 9|6 6
T 1.340.032 7 458,752 7 28672 |7 1,792 7 w27 7
8 8388608 8 524,288 8 32768 | 8 2.048 8 1288 8
9 9437184 9 589.824 9 36864 | 9 2304 9 14a |9 9
A 10,485,760 A 655.360 A 40,960 A 2560 A 160 | A 10
8 11,534,336 8 720,896 8 45056 | B 2816 8 Ve|8 1"
C 12582912 € 786,432 c 49,152 | C 3072 c 92c¢ 12
D 13,631,488 D 851,968 D 5).248 0 3.328 [»] 208 |0 1
€ 14,680,064 E 917504 E 57344 € 1584 E 224 | € 14
F 15,728,640 f 981040 F 61440 F 3840 F 210 | F 15
0123 4567 0123 4567 | 0123 4567
BYTE BYTE 1 BYTE

TABLE D-2. ASCII Character Set (7-Bit Code)

MSD 0 1 2 3) 5 6 7
LSO 000} 001|010} 011 | v00]f 101|110} 111
0 0000 | NUL | DLE sP 0 e 4 [
) 0001 | SOH | DC1 ! 1 a] a q
2 o010} sTx | oc2 - 2 8 R b 2
3 0011 | ETX | DC3 # 3 [~ s c s
a 0100 | €OT | Qca S 4 [s] T d t
5 0101 | ENG | NaK % 5 3 u] u
6 03110 ACK SYN & 6 F v t v
7 0111 | BEL | ETB g 7 G w 9 w
8 1000 | 8S caN { 8 H X h x
9 1001 | HT EmM) 9 | ' ' v
A 1010 | LF sus . : J 4 ' t
8 1w0n | VT | €scC + i K { k
c 1100 | FF FS ’ < L \ t f
o] 1101 | CR GS - - M] m
E 1110 | so RS . o N t n ~
[3 1M | oS Vs / ? Al - ° DEL

TABLE D-4.

TABLE D-3. Powers of 2 Powers 0f 2/Powers Of 16 Conversion
20 n
256 8 20 =160
512 9 24 =16
8 o 2
1024 10 2% =16
2048 1" 2'2 4 16?
4 096 12 2'6 a 164
P+ I 5
8192 13 2“ 156
16 384 14 2m - 167
32768 15 z]2 . usa
65536 16 236 - xsg
131072 17 ;0"16‘0
262 144 111 ” -1(:)”
H24 2148 1 PRI Y
1048 576 20 2% w412
952 = 3
20971%2 -~ FAl 255 16“
4 194 304 22 ;0-16,5
3 388 608 23 .16
16777 216 24

TABLE D-5. Powers of 16

167 n

) 0

16 1

256 2

4 096 3

65 536 a

1648576 5

16777 216 6

268 435 456 7

4294 967 296 8
68719476 736 3
1099511627776 10
176021146 044 416 "
2004724 926 290 whiy 12
4503599 627 370 496 13
72057594 037 927 936 14
1152921504 606 846 976 15

MOSTEK.

« ZBO-F8Serstens
3870Q§|g§tlon5 i

1215 W. Crosby Rd. » Carroliton, Texas 75006 « 214/242-0444
In Europe, contact: MOSTEK GmbH, Talstrasse 172
D 7024 Filderstadt-1, W. Germany » Tele: (0711) 701096

‘Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed to be accurate and
feliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is
‘granted under any patents or patent rights of Mostek.

Reprinted in England by Valentine Press Ltd.. 58 Woodford Avenue, Ilford, Essex, England August 1978 Copyright 1877 by Mostek Corporation
Publication No. MK 78515 ML seved

TYNNYIN DONINNYHDOHA 087 MAISOIN

	t0015
	ta0296
	ta0297
	ta0298
	ta0299
	ta0300
	ta0301
	ta0302
	ta0303
	ta0304
	ta0305
	ta0306
	ta0307
	ta0308
	ta0309
	ta0310
	ta0311
	ta0312
	ta0313
	ta0314
	ta0315
	ta0316
	ta0317
	ta0318
	ta0319
	ta0320
	ta0321
	ta0322
	ta0323
	ta0324
	ta0325
	ta0326
	ta0327
	ta0328
	ta0329
	ta0330
	ta0331
	ta0332
	ta0333
	ta0334
	ta0335
	ta0336
	ta0337
	ta0338
	ta0339
	ta0340
	ta0341
	ta0342
	ta0343
	ta0344
	ta0345
	ta0346
	ta0347
	ta0348
	ta0349
	ta0350
	ta0351
	ta0352
	ta0353
	ta0354
	ta0355
	ta0356
	ta0357
	ta0358
	ta0359
	ta0360
	ta0361
	ta0362
	ta0363
	ta0364
	ta0365
	ta0366
	ta0367
	ta0368
	ta0369
	ta0370
	ta0371
	ta0372
	ta0373
	ta0374
	ta0375
	ta0376
	ta0377
	ta0378
	ta0379
	ta0380
	ta0381
	ta0382
	ta0383
	ta0384
	ta0385
	ta0386
	ta0387
	ta0388
	ta0389
	ta0390
	ta0391
	ta0392
	ta0393
	ta0394
	ta0395
	ta0396
	ta0397
	ta0398
	ta0399
	ta0400
	ta0401
	ta0402
	ta0403
	ta0404
	ta0405
	ta0406
	ta0407
	ta0408
	ta0409
	ta0410
	ta0411
	ta0412
	ta0413
	ta0414
	ta0415
	ta0416
	ta0417
	ta0418
	ta0419
	ta0420
	ta0421
	ta0422
	ta0423
	ta0424
	ta0425
	ta0426
	ta0427
	ta0428
	ta0429
	ta0430
	ta0431
	ta0432
	ta0433
	ta0434
	ta0435
	ta0436
	ta0437
	ta0438
	ta0439
	ta0440
	ta0441
	ta0442
	ta0443
	ta0444
	ta0445
	ta0446
	ta0447
	ta0448
	ta0449
	ta0450
	ta0451
	ta0452
	ta0453
	ta0454
	ta0455
	ta0456
	ta0457
	ta0458
	ta0459
	ta0460
	ta0461
	ta0462
	ta0463
	ta0464
	ta0465
	ta0466
	ta0467
	ta0468
	ta0469
	ta0470
	ta0471
	ta0472
	ta0473
	ta0474
	ta0475
	ta0476
	ta0477
	ta0478
	ta0479
	ta0480
	ta0481
	ta0482
	ta0483
	ta0484
	ta0485
	ta0486
	ta0487
	ta0488
	ta0489
	ta0490
	ta0491
	ta0492
	ta0493
	ta0494
	ta0495
	ta0496
	ta0497
	ta0498
	ta0499
	ta0500
	ta0501
	ta0502
	ta0503
	ta0504
	ta0505
	ta0506
	ta0507
	ta0508
	ta0509
	ta0510
	ta0511
	ta0512
	ta0513
	ta0514
	ta0515
	ta0516
	ta0517
	ta0518
	ta0519
	ta0520
	ta0521
	ta0522
	ta0523
	ta0524
	ta0525
	ta0526
	ta0527
	ta0528
	ta0529
	ta0530
	ta0531
	ta0532
	ta0533
	ta0534
	ta0535
	ta0536
	ta0537
	ta0538
	ta0539
	ta0540
	ta0541
	ta0542
	ta0543
	ta0544
	ta0545
	ta0546
	ta0547
	ta0548
	ta0549
	ta0550
	ta0551
	ta0552
	ta0553
	ta0554
	ta0555
	ta0556
	ta0557
	ta0558
	ta0559
	ta0560
	ta0561
	ta0562
	ta0563
	ta0564
	ta0566
	ta0567
	ta0568
	ta0569
	ta0570
	ta0571
	ta0572
	ta0573
	ta0574
	ta0575
	ta0576
	ta0577
	ta0578
	ta0579
	ta0580
	ta0582
	ta0583
	ta0584
	ta0585
	ta0586
	ta0587
	ta0588
	ta0589
	ta0590
	ta0592
	ta0593
	ta0594
	ta0595
	ta0596
	ta0598
	ta0599
	z

