


TO THE READER

To the best of our knowledge, this manual is technically correct at the
time of going to press. However, if you notice any mistakes or have
any criticisms or suggestions then we would be grateful to receive
them.

Yours Sincerely

Richard Paul Jones (Producer)



COPYRIGHT

FIG-FORTH the program and the contents of the FIG-FORTH
manual are copyrighted and all rights are reserved by Interceptor
Micro’s, Lindon House, The Green, Tadley, Hants.

All rights of the producer, and. the owner, of the work being
produced, are reserved. Unauthorised copying, hiring, lending,
public performance-and broadcasting of this program is prohibited.
The publisher assumes no responsibility for errors, liability for
damage arising from its use.

WRITTEN BY BRIAN PERRY
PRODUCED BY RICHARD PAUL JONES



FOREWORD

This version of FORTH for the Amstrad CPC-464 computer is a complete and extended version of the
FIG-FORTH standard as defined by the FORTH Interest Group. The extensions are in the form of
WORDS not defined in FIG-FORTH but never the less regarded as necessary requirments to the language
and special extensions to cover the special facilities offered by the AMSTRAD CPC-464 computer.

The manual is divided into several sections. Sections 1 and 2 are common to all users, whereas section 3
caters for the user who has had previous exposure to the FORTH language. Section 4 is an introductory
guide to FORTH for the user with no previous experience in the use of the language. This section is not
intended to be a full tutorial on the subject. It is intended to give an overview of FORTH and to allow the
user to begin using the system as quickly as possible. For a complete indoctrination on the subject there are
many excellent books available and appendix 5 should be consulted for recommended reading on this.

At all times the assumption is made where required, that the user is familiar with the operational
aspects of the AMSTRAD CPC-464 and its BASIC language. B



CONTENTS
1. INTRODUCTION

..................................................................... 3

2. LOADING FORTH ..ttt iiiii ettt ittt eeansasenasanenrnanannnns 4

3LUSING FORTH oot ittt ittt et e e e i e e e neasaenananens 4
3.1 FORTH ENVIRONMENT ...0iinitiiiiiiititientnienrnearennnsanronens 4

3.2 KEYBOARD INPUT
I B = £ I X
3.4 ARITHMETIC ............

3.5 MACHINE CODE ......... .
3.6 RECURSION .................
3.7 DICTIONARY FORMAT
BB PRINTER ..ttt ettt et et te et a et aanreiaenenns
3.9 SCREEN EDITOR
3.10 GRAPHICS AND EXTENSIONS ....uutiiinnirinnerrnieerrnenrnneeennanes 9
3.11 ARRAYS AND TEXT STRINGS
3.12 SOUND GENERATION
3.13 ASSEMBLER

APPENDICES

L ERROR CODES ..\ttt ittt ittt teteeteen it seteanennenreneanennss 26
2. COLD START PARAMETERS ... ittt et ie ettt rneinnenens 26
3. FIG-FORTH EXTENSIONS ... ittt ittt ctieeeteercteninrnenanenens 27
4. FIG-FORTH GLOSSARY ...ttt ittt ettt et iteen e earenranennes 32
5. FURTHER READING .. 0tininiitiiiiiiitit ittt tettanetaensatneianenreeaeanneanss 49
6. FIG-FORTH VOCABULARY ...ttt iiieiiieiiiieiiiaeaeaneass 50



INTRODUCTION

FORTH is not a new language. It was originally developed in the late sixties by Charles H. Moore,
working on an IBM 1130 a "third generation” computer. The results he believed to be so powerful that he
considered it a "fourth generation” computer language. The computer however would only allow five
character identifiers so FOURTH became FORTH.

Since that time FORTH has grown in popularity both in the professional enviroment and in the area of
the computer hobbyist.

Many so called "computer-buffs” shy away at the very mention of the word FORTH uttering crys of
"REVERSE POLISH NOTATION”, "LACK OF ERROR TRAPPING”, "STACKS”, "COME BACK
BASIC, ALL IS FORGIVEN” etc. In essence, their problem is they have either never used FORTH or they
will not use it because of fear of its unusual dialect. What still remains however is the undisputable fact that
FORTH users are on the increase both in industry-and in the home.

The author was introduced to FORTH some two years ago while reading an article on the subject. His
interest grew after seeing a demonstration of FORTH being used to control a robot arm. The speed and
flexibility of FORTH showed it to be an ideal language for the kind of work he was involved in (control
engineering). Since that time he has used FORTH extensively in many projects that involved real time
control.

FORTH is an unusual language. It casts aside many of the golden rules of programming. However as
you begin to use it you will more than likely begin to see its power, and beauty. Be warned however, few
people who learn FORTH ever go back to conventional languages.



LOADING FORTH
To load and run FORTH follow these simple steps.
1. Load the cassette into the recorder and rewind to the beginning of the tape.
2. Press the CTRL/SHIFT and ESC keys in that order to reset the computer.
3. Press play on the recorder.

4. Press the CTRL and small ENTER key on the keyboard followed by any key. FORTH will load
and self start on successful completion.

The sign on message " Amstrad Fig-Forth Version 1.0 ” will be displayed indicating the system is
running.

It is suggested at this stage that a backup copy is made to safeguard against accidental damage to
the master. To do this insert a blank cassette into the recorder and press play and record.

Type in the FORTH word SYSDUMP ensuring that you-are in upper case characters and press the
ENTER key. The FORTH system program will now be saved to cassette and can be reloaded as described
above. For a further description of the SYSDUMP command see appendix 3.

USING FORTH
3.1 THE FORTH ENVIROMENT.

FORTH on the AMSTRAD CPC-464 occupies some 34K of memory. Fig 1a shows a memory map of
the system. FORTH starts at 4000 hex, the immediate area above this contains the jump vectors for the
COLD and WARM start operations and also the cold start parameters (see appendix II). Next is the
precompiled or kernel vocabulary. This occupies -around 10K bytes of memory and contains all FIG-
FORTH words and extensions. The end of the dictionary contains a dummy word TASK which is purely to
indicate the end of the precompiled portion. The free dictionary area begins immediately above TASK, the
actual address can be found from the FORTH system variable HERE, although this value will change as
new definitions are added to the vocabulary.

At a fixed 44 byte offset from HERE is the pad. This is a temporary text storage area for use by the
system and the user. The start address for pad can be found by using the system variable PAD. Around 8K of
free dictionary space is allocated in the initial system, which is more than enough for even the most intrepid
programmer.

Address 8B00 hex sees the beginning of the terminal input buffer and the Parameter or Data stack. The
parameter stack moves down towards HERE while the Terminal input buffer moves up towards high
memory. The addresses of these can be found using the system variables TIB and SO respectively. After a
cold start these values will be the same.

Above the Terminal input buffer is the return stack and user variable area.
There are 40 hex bytes allocated for the user variables of which 30 hex bytes have been used. New user
variables may be declared using an offset beginning with 32 hex, two bytes being used for each user variable
defined.

Beginning at 8BEQ hex are eight block buffers, each buffer being made up of 2 header bytes, 128 data
bytes and two tail bytes. These buffers are used in the reading and writing of data to and from the virtual
memory disc system. The beginning and end address of the buffers can be found from the system constants
FIRST and LIMIT respectively.

The virtual memory disc lies directly below the precompiled FORTH beginning at location 0400 hex.
There are 14 edit screens available each screen being 1K bytes in length. For more information on the screens
see section 3.8.



#9000 LIMIT
BLOCK BUFFERS

8 * 128 BYTE BUFFERS
“+2 HEADER + 2 TAIL

#8BEO FIRST
USER VARIABLES
#8BAO RO
RETURN STACK
] v
£
TERMINAL INPUT BUFFER
TIB
#8B00 S0
PARAMETER STACK
PAD AREA PAD
44 BYTE
OFFSET
I FREE DICTIONARY SPACE HERE
FORTH DICTIONARY
{PRECOMPILED)
#4000 ORIGIN
VIRTUAL MEMORY
SCREENS
#0400 14 1K BYTE SCREENS

FIG 1.a FORTH MEMORY MAP

3.2 KEYBOARD INPUT.

All precompiled words in the FORTH dictionary have all been defined in upper-case characters,
therefore ensure that the keyboard has upper-case selected before using the system. Any new definitions that
are entered may be in upper or lower-case to suit the user.

All input from the keyboard is directed to the terminal input buffer prior to processing. A carriage
return terminates entry from the keyboard and allows the inner interpreter to process the text held in the
terminal input buffer. The buffer itself is 128 bytes long, its base address being found from the FORTH
variable TIB.

The only editing facility available in the immediate mode:is the (DEL) key. Should you make a typing error,
backspace with the (DEL) key to the point where the error was made then retype the remainder of the line
terminating of course with the enter key.

If you intend to type in a substantial ammount of text then the screen editor should be used, which is
fully described in section 3.8

3.3 THE STACKS.

Forth uses two stacks in its operation, the data stack and the parameter stack. Both of these stacks
operate on 16 bit values and are of the "last in first out variety”. The parameter stack is realised by using the
software stack of the Z80 processor and is used primarily for passing parameters between FORTH words.
The return stack is software implemented and it is used mainly to temporarily store values during loop and
branch operations and also by the inner interpreter to control program flow.

5



3.4 ARITHMETIC

The FORTH dictionary contains a complete integer arithmetic package for operation on 16 bit (single
numbers)and 32 bit (double numbers). As with all FORTH systems arithmeticis handled using REVERSE
POLISH or POST FIX NOTATION i.e. the operands follow the operator. To illustrate the point adding the
two numbers 123 and 456 in FORTH would be achieved by typing in :-

123 456 + . (ENTER)
This would print the result 579 on the computer screen.

The number base for all arithmetic operations is set to decimal when FORTH is loaded from cassette or
after a cold start. The number base can be changed to binary or hex by the use of the FORTH words
BINARY or HEX respectively. All subsequent arithmetic operations will be calculated and displayed in the
relevant number base. Alternatively any number base in the range 1-255 may be set up by storing the
appropriate value in the system user variable BASE e.g.

8 BASE ! (enter)
sets the number base to OCTAL (base 8).

The number range allowed in FORTH is:-
Single ( 16 bit ) numbers -32768 to +32767
Double ( 32 bit ) numbers -2,147,483,648, to +2,147,483,647

3.5 MACHINE CODE

It is relatively easy to define new-words in FORTH which are primitives i.e. words written purely in
machine code. This has the advantage of being able to create specific time critical sections of code which will
_run at the full speed of the Z80 microprocessor.

The easiest way to illustrate the method is with an example as shown below.

HEX ( Set number base to hexadecimal )

CREATE 1+ ( Create new definition with the name 1+ )
E1C, ( POP HL - Get value off top of stack into HL )
23C, (INCHL-HL=HL+1)

E5C, ( PUSH HL - Put new value onto top of stack )
FD C, E9 C, ( JP (IY) - Forces jump to inner interpreter )
SMUDGE ( Allows new word to be "found” )

This example creates a primitive of the FORTH word 1+ which adds one to the value on the top of the data
stack. The FORTH word C, encloses the byte preceeding it into the dictionary. When creating primitives in
this way a few simple rules must be obeyed i.e.

a) If your routine uses the BC register pair save the contents before your routine is executed
and retrieve them afterwards

b) Do not use the Z80 alternate register set. This may conflict with the AMSTRAD CPC-464
operating system.

¢) Do not use the IY register, It is used by the system to point to the inner interpreter routine.
d) Always end your machine code with the JP (IY) instruction followed by SMUDGE.
3.6 RECURSION

Recursion is a technique by which a routine actually calls itself, a test usually being included in the
routine to exit it. Recursion is not defined in Fig-Forth however this implementation supports it.

Usually in FORTH if a definition attempts to call itself it results in an error being generated. In this
implementation the problem is removed by defining the word MYSELF which compiles the code field
address of the word currently being defined into the definition. A good example of recursion is- the
calculation for the factorial function. This example calls itself repeatedly to calculate the factorial of a
number in the range 0 to 7.



DECIMAL

: FACTORIAL ( Calculates factorial of n. Result to T.O.S. ) )
DUP 0 < OVER 7'> OR IF ."Invalid number” QUIT THEN
DUP 0=
IF DROP |
ELSE DUP 1 - MYSELF *
THEN ;

3.7 DICTIONARY FORMAT
The format of compiled definitions stored in the dictionary is as follows:-

Length of name with bit 7 set ( 1 byte ) NFA

Characters in name. Last ( n bytes )
character has bit 7 set

Link to previous definition (2 bytes ) LFA
Pointer to execution code ( 2 bytes ) CFA
List of code addresses or ( n bytes ) PFA
machine code if primitive ( n bytes )

Address of inner interpreter ( 2 bytes )
The name field address (NFA) is made up in the following way:-

Bit 7 set (msb)

-

-8  Precedence bit. 1 = immediate
—»  Smudge bit. 1 = smudged
—

Name count. Max 31

T
l—MSB—l I—LSB__‘

3.8 PRINTER

Under normal conditions all output is directed to the screen display. However using the FORTH word
PRINTER wili force all output to the centronics interface and thus the printer. Before using this word ensure
that you have connected the printer and that itis on line. To revert back to normal screen mode the FORTH
word SCREEN can be used to redirect all output back to the display.

The example below will dump the dictionary to the printer and return to screen output.

PRINTER VLIST SCREEN (enter)
3.9 SCREENS AND SCREEN EDITOR.

FORTH by convention uses editing screens of 16 lines by 64 characters with line numbers in the range 0
to 15. To comply with this the screen editor is implemented using MODE 2 text.

In a conventional disc based FORTH system, screens are held on disc and are called by the user as
required. This implementation of FORTH simulates a disc by using a virtual memory system to hold screens
in RAM. The reading and writing to the screens is totally transparent to the user. The words available to
access the screens indirectly are fully described in appendix 4.

There are 14 €dit screens avialable, numbered 1 to 14. Screens 0 is used to refer to keyboard input,
therefore should not be used in this context.

To enter the screen editor, type 2 MODE and then n EDIT where nis the number of the screen you wish
to edit. The display will clear and the line numbers 0 to 15 will appear together with the edit screen number.
The text cursor which is always in the overwrite mode will be located at the beginning of line 0. Text may
now be entered as required, any existing text at the cursor position being overwritten.

7



A number of editing commands are available these being described below.
EDITOR COMMANDS.
n EDIT - ENTERS EDITOR AT SCREEN n
CTRL/B - BLANKS ENTIRE SCREEN FILLING AREAS WITH SPACES

CTRL/O - OPENS UP A NEW LINE AT CURRENT CURSOR POSITION MOVING SUBSEQUENT
LINES INCLUDING CURRENT LINE DOWN. ANY TEXT ON LINE 15 IS LOST.

CTRL/W - WIPES OUT THE LINE AT THE CURSOR POSITION MOVING SUBSEQUENT LINES
UP. LINE 15 IS FILLED WITH SPACES.

CTRL/Z - ERASES THE LINE AT THE CURSOR POSITION FILLING IT WITH SPACES. NO
OTHER LINES ARE AFFECTED.

CTRL/Q - QUITS THE EDITOR RETURNING TO THE INPUT MODE. ALL CHANGES MADE
ARE MADE PERMANENT.

CURSOR CONTROL KEYS.
<— MOVES CURSOR TO THE LEFT.

—3» MOVES CURSOR TO THE RIGHT.
f MOVES CURSOR UP ONE LINE.

* MOVES CURSOR DOWN ONE LINE.

ENTER - MOVES CURSOR TO START OF NEXT LINE.

CTRL/— - MOVES TO NEXT HIGHER EDITING SCREEN.
CTRL/ #— - MOVES TO NEXT LOWER EDITING SCREEN.

CLR - INSERTS A SPACE AT CURRENT CURSOR POSITION
AND MOVES ALL SUBSEQUENT TEXT TO THE RIGHT
DEL - DELETES THE CHARACTER AT THE CURRENT

- CURSOR POSITION MOVING SUBSEQUENT TEXT LEFT

Screens may be moved outside of the editor with the FORTH word COPY e.g.
1 4 COPY
will copy screen 1 to screen 4. The original contents of screen 1 are not destroyed.

Screens may be compiled using n LOAD where n is the screen number to be compiled. If more than one
screen requires compiling the FORTH word —> (pronounced arrow) may be used as the last word on
any screen. This will force complilation of the next edit screen.

Edit screens may be saved to, and read from cassette using the FORTH words PUT and GET
respectively. THESE words are illustrated below.

1 1 PUT (enter ) - Saves screen 1 to cassette.

1 5 PUT (enter ) - Saves screens 1 to 5 to cassette.

1 1 GET (enter ) - Loads screen 1 from cassette

1 5 GET (enter ) - Loads screen 1 to 5 from cassette.

In all cases ensure that the cassette recorder is set up for play or record prior to execution of the words as no
prompt message is issued.



3.10 GRAPHICS AND EXTENSIONS

Many extensions are included in FORTH to cater for the colour and graphics facilities of the AMSTRAD
CPC-464. Wherever possible the FORTH word used, has been choosen to be equivalent to its BASIC
counterpart.

DRAWING & PLOTTING

The words provided for drawing and plotting are DRAW, DRAWR, PLOT and PLOTR. These are direct
equivalents to the BASIC commands of the same name but require their X and Y parameters on the data
stack prior to execution e.g:

: DRAW-LINE CLG 599 399 DRAW ;

will draw a line from the bottom left to the top right-of the VDU screen in the current graphics pen. The
graphics pen may be changed by using the FORTH word GPEN which again requires its parameter on the
stack.

Here is an example which incorporates many of the graphics words available. It-selects mode 1 and draws
random lines on the screen in different colours. The inks are then changed at random to produce a pulsating
picture. The program may be aborted by pressing the CTRL/Q keys.

: X1 599 RANDOM ; : X2 599 RANDOM ;

: Y1 399 RANDOM ;: Y2 399 RANDOM ;

: LINE X1 Y] MOVE X2 Y2 DRAW ;

: 4-LINES 4 0 DO I GPEN LINE ;

: DRAW-LINES 50 0 DO 4-LINES LOOP ;

: DELAY 500 0 DO LOOP ;

. INK-CHANGE 500 0 DO 26 RANDOM DUP 4 RANDOM INK DELAY LOOP ;
: RESTORE 13 130 INK 00 1 INK | PEN 0 PAPER ;

: PATTERN RESTORE 1 MODE DRAW-LINES INK-CHANGE RESTORE ;
Typing the word PATTERN will fun the routine.

WINDOWS
Up to 8 streams may be specified each with its own window characteristics. The following example sets up a
window on stream 3. The co-ordinates specified are in the order TOP, BOTTOM, LEFT, and RIGHT.

3 STREAM ( selects text screen )

10 20 15 60 WINDOW. ( Set up window ).

VLIST ( Shows extent of window ).

0 STREAM ( RETURN TO DEFAULT SCREEN )

USER DEFINED CHARACTERS
FORTH provides two words for creating user defined characters. The first symbol is equivalent to BASICS
SYMBOL AFTER COMMAND e.g.

128 SYMBOL
will allow all characters including and after 128 to be defined. The word CHARACTER allows the re-
definement e.g.

HEX
OF 03 05 09 10 20 40 80 A8 CHARACTER

will redefine character A8 (decimal 168) from the !/, symbol to a diagonal arrow.
To print this character we use the FORTH word EMIT e.g.

HEX A8 EMIT

PENS AND INKS
Pens and Inks may be changed within the constraints of the current screen mode as shown below.

1 MODE ( Select mode 1)

3 PEN ( Select pen 3 ie red in defualt )

13 13 0 INK ( Change pen 0 to ink 13)

16 9 1 INK ( Change pen 1 to inks 16 and 9 i.e Flashing ).

GRAPHICS TESTING
Graphics points may be tested with the TEST and TESTR commands. These return to the top to the stack

9



the pen number at the X and Y co-ordinates supplied as parameters e.g.
CLG 100 100 PLOT (PLOTS POINT IN CURRENT GPEN)

100 100 TEST (RETURNS PEN TO TOP OF STACK)

JOYSTICKS

Two-commands ie JOY0, JOY1 returns the value of the joystick as the second stack entry with a true flag as
the top. If the joysticks are not active a false flag is placed on the top of the stack only.
The values returned for an active joystick are shown below.

FIREBUTTON = 16

TIMER

One timing facility is available in FORTH. The word 0TIME will reset the timer to zero and begin the count
sequence. The word ?TIME will put-the current timer value onto the stack as a double number. The timer is

incremented in steps of '/3, of a second. The timer may be used amongst other things for timing sections of
code e.g.

0TIME ."HELLO” 7TIME D.

Will print the number 12 indicating that the print statement took 12 X !/, seconds i.e. approximately 0.04
seconds.

ARRAYS AND TEXT STRINGS
3.11

Single and double dimension arrays may be created using the defining word 1-ARRAY and 2-ARRAY
respectively e.g.

10 1-ARRAY FRED

will create a single dimension array of 10 elements called FRED. Note that there are in fact 11 elements in the
array as they range from 0-10 (this is the same as the BASIC version of arrays). Below is an example which
creates a two dimension array of 3 rows by 4 columns with the name of BILL.

3 4 2-ARRAY BILL

To write a value into for example, the array BILL, we specify first the number to store, then the row and
column numbers and then the array name followed by the FORTH word ! which stores the number e.g.

23514 BILL !
will store the number 235 at row 1 column 4 of the array BILL.

Reading from the array is very similar. We specify first the row and column numbers then the array name
then the FORTH word @ (FETCH) e.g.

10



14BILL @
will read row 1 column 4 of the array BILL and store the value on the top of the stack.

Although the examples shown are for double dimension arrays the same format applies to single dimension
arrays. Note however that no tests are performed by FORTH to check that you are accessing a valid array
location therefore unpredictable results may occur if this situation arises.

TEXT STRINGS

In addtion to the normal text handling words provided in FORTH, two special words have been provided to
help in text string handling.
The first word is STRING and is a defining word used in the form as shown in the example below.

20 STRING NAME

This creates a dictionary entry called NAME and allocates space for up to 20 text characters. Executing the
word NAME after compilation places the address of the string stored in NAME onto the stack whereit may
be printed by the FORTH word TYPE.

The word INPUTS allows a string to be entered from the keyboard terminated by a carriage return and
stores the string at the address preceding the word. The example below shows how the words STRING and
INPUTS are used.

30 STRING SURNAME ( creates header called SURNAME and allocates 30 spaces )

: ASK-NAME
CLS CR .” WHAT IS YOUR SURNAME PLEASE”
SURNAME INPUTS$ ( Read characters from keyboard and store at SURNAME )
” YOUR SURNAME IS ” SURNAME TYPE CR ; ( Print surname on screen )

SOUND GENERATION
3.12

The approach to sound generation using FORTH is somewhat different to that employed by BASIC. The
method adopted is to create named sound data biocks which hold the various parameters required for sound
generation. These data block can be played using the FORTH word PLAY. The defining word used to
create the data blocks is called SOUND and the general form of SOUND is as shown below.

478 1 SOUND BEEP

This creates a sound name BEEP with a tone period of 478 and to be executed on channel A of the sound
generator. Typing the following will cause the sound to be played.

BEEP PLAY

The word PLAY tries to add the referenced sound to the sound queues of of the relevant channel (there are
five queues per channel). If an attempt to add a sound to the queues failed an error message is given and the
program aborts.

The layout of the sound data blocks is shown below. Their exact useage being fully described in the CPC-464
OPERATING SYSTEM FIRMWARE SPECIFICATION (SOFT 158).

BYTE 0 Channels to use and rendezvous requirments.
BYTE i Amplitude envelope ( default 0 )

BYTE 2 Tone envelope ( default 0 )

BYTE 3 Tone envolope ( default 0 )

BYTES 34 Tone period in the range 0-4095 ( 0 is no sound )
BYTE 5 Noise period in the range 0-31 ( 0 is no sound )
BYTE 6 Initial amplitude ( default 4)

BYTES 7-8 Duration or envelope repeat count ( default 20.)

The tone periods and there corresponding musical notes can be determined from the table provided in
Appendix VII of the CPC-464 user instructions. The channels to use A, B and C are represented by the
numbers 1, 2 and 4 respectively.

11



The parameters of the sound block may easily be modified to build up a complex sound. The words provided
to enable this to be carried out are:-

1). CHANNEL
Used in the form 2 BEEP CHANNEL now assigns the sound BEEP to Channel 2. A
number 3 would assign it to sound channels 1 and 2 simultaneously etc.

2). AMP-ENV
Use in the form (n) BEEP AMP-ENV will assign a predefined amplitude envelope where
(n) is in the range 1-15 (see later).

3). TONE-ENV
Used as per AMP-ENV but specifying a tone envelope (see later).

4). PERIOD
Used in the form 239 BEEP PERIOD will change the note played from a middle C to a C
one octave higher on the musical scale. The number supplied must be in the range 1 to
4095. Again refer to the CPC-464 user instruction manual for the period to musical note
relationship.

5). NOISE
A value supplied in the form (n) BEEP NOISE will add noise in the sound of BEEP.
The number (n) must lie in the range 0-31 where 0 represents no noise.

6). VOLUME
Used in the form (n) BEEP VOLUME will set the volume level to the value (n). The value
n must lie in the range 0 to 15 where 0 is no volume and 15 is maximium,

7). DURATION

. Used in the form (n) BEEP DURATION where (n) is in the range--32768 to +32767. If (n)
is ‘a positive number then that represents the duration of the note in 1/100ths second.
Where the number is negative, the positive value of this number represents the number
of times the volume envelope (if specified) should be repeated. A value of 0 causes the
duration to be governed by the amplitude envelope supplied.

8). SHOLD
This when used in the form BEEP SHOLD will prevent that sound from running until
released (see RELEASE).

9). SFLUSH
This is used in the form BEEP SFLUSH and sets the flush bit of the sound block. This
forces the sound queues to abandon any current sound enabling the referenced sound to play
immediately.

10). RELEASE
This is used in the form (n) RELEASE and will release a sound on channel (n) which was
previously held using SHOLD.

11). FREEZE
This will stop all sounds in mid-flight.
12). CONTINUE
Releases sounds which have been stopped using FREEZE.

13). RESET
This re-initialises the sound manager and sound chip and clears all queues

14). SWAIT
Used in the form (n) SWAIT will cause the program to wait until there is room on a
sound queue of channel (n) before adding any more sounds to the queue.

15). SQ
Used in the form (n) SQ will return to the top of the data stack the status of sound
channel (n). The number returned is encoded a follows.

12



Bits 0.2 Number of free slots in the sound queue.

Bits 3 Channel is waiting to rendezvous with channel A.
Bit 4 Channel is waiting to rendezvous with channel B.
Bit 5 Channel is waiting to rendezvous with channel C.
Bit 6 The channel is held.

Bit 7 The channel is producing a sound.

ENVELOPES

Both named amplitude and tone envelopes may be created with the FORTH words ENV and ENT. The
envelopes are of a similar construction to those used in BASIC, each envelope having up to five sections of
three parameters, the main difference being that the parameters are all in reverse order to that specified by
BASIC.

The example below shows the creation of an amplitude envelope of the general form shown in Fig 3a.

The main point to note is that the envelope parameters are reversed i.c. the last envelope section is declared
first. The order for each section of the envelope is pause time, step size and step count. The number 4 before
the word ENV is to indicate the number of sections in the envelope.

The above method for creating amplitude applies in exactly the same way to tone envelopes using the ENT
word.

I
! I
2-15 1501 I1-110

Fig 3a waveform for SHAPE

DECIMAL
1-110 1501 2-15 1354ENV SHAPE ( create envelope )
1 SHAPE ( assign SHAPE to envelope number 1)

100 1 SOUND GONG ( create sound name GONG )
0 GONG DURATION ( allow envelope to control length )

0 GONG VOLUME ( Allow envelope to control volume )
1 GONG AMP-ENV ( Assign envelope 1 to GONG )
GONG PLAY ( Play it )

13



ASSEMBLER

A FORTH Assembler is very different to the standard assembler most of us are used to. It is designed to
allow easy creation of new FORTH machine code primitives using easy to understand mnemonics. The
target memory for the assembled code is the free dictionary area ( designated by the FORTH word HERE ).
No symbol table is used by the assembler, instead all branch or jump references are handled by high level
structures via the stack.

The actual mnemenics used are in fact a mixture of Z80 AND 8080 mnemonics ( the 8080 is the forefather of
the Z80 ) the reason for using the 8080 mnemonics being that they tend to resolve some of the addressing
problems that occur in similarly named Z80 instructions e.g. several forms of addressing modes for the Z80
LD instruction.

One last point which must be pointed out before we examine the assembler in detail is that the normal
FORTH post fix notation still applies between opcodes and operands used in the code (see later).

INSTRUCTION SET.

The mnemonic instruction set supported by the FORTH assembler is given below together with a brief
description of their functions. For a full description it is suggested that the user consult one of the many
books available relating to the Z80 microprocessor.

a). ARITHMETIC AND LOGIC GROUP.

ADD Adds contents of Acc to reg or (HL).

ADC Adds with carry contents of Acc to reg or (HL).
SUB Subtracts contents of Acc from reg or (HL).
SBC Subtracts with carry contents of Acc from reg or (HL).
ADI Adds immediate byte to contents of Acc.

ACI Adds with carry immediate byte to contents of Acc.
SUI Subtracts immediate byte from contents of Acc.
SBI Subtracts with carry immediate byte from contents of Acc.
DAD Add HL register pair to reg-pair.

DAA Decimal adjust the accumulator.

CPL Compliment the contents of the accumulator.
INC Increments contents of reg of (HL) by one.

INX Increments contents of reg-pair by one.

DEC Decrements contents of reg or (HL) by one.
DCX Decrements contents of reg-pair by one.

OR Logical OR accumlator with reg or (HL)

ORI Logical OR immediate byte with accumulator.
XOR Exclusive or accumulator with reg or (HL).
XRI Exclusive or accumulator with immediate byte.
AND accumulator with reg or (HL)

ANI AND accumulator with immediate byte.

Ccp Compare accumulator with reg or (HL).

CPI Compare accumulator with immediate byte.
SCF Set carry flag.

CCF Clear carry flag.

b). LOAD AND STORE GROUP

STAX Load D (BC) or (DE) from accumulator.

LDA Load accumulator from (addr).

LDAX Load accumulator from (BC) or, (DE).

LHLD Load HL from (addr).

XCHG Exchange contents of DE and HL.

XTHL Exchange (SP).and HL.

STA Load (addr) from accumulator

SHLD Load (addr) from HL.

SPHL Load SP from HL.

LXI Load reg-pair with 16 bit immediate data.
MOV Load reg or (HL) from reg or (HL)

Note that (HL) in the FORTH assembler is designated by the word M.
14



¢). CALL AND RETURN GROUP.

RET-C Return if carry flag set.

RET-NC Return if carry not-set.

RET-Z Return if result zero.

RET-NZ Return if result not zero.

RET-P Return if result positive.

RET-M Return if result negative.

RET-PO Return if parity odd.

RET-PE Return if parity even.

CALL Call subroutine at addr.

JP Jump to address.

d). ROTATE AND SHIFT GROUP.

RLA Rotate accumulator left through carry.
RRA Rotate accumulator right through carry.
RLCA Rotate accumulator left circular.
RRCA Rotate accumulator right circular.

e). MISCELLANEOUS.

PUSH Push reg-pair to stack.

POP Pop reg-pair from stack.

ouT Qutput accumulator to port.

IN Input from port to accumulator.

EI Enable interrupts.

DI Disable interrupts.

HALT Halt processor until reset or interrupt.
NOP - No operation..

RST Call a restart operation.

f). STRUCTURES

BEGIN — AGAIN
BEGIN — UNTIL
BEGIN — WHILE — REPEAT

IF - ELSE — THEN

g). CONDITIONALS

0= Tests for the zero flag being set.

Cs Tests for the carry flag being set.

PE Tests for even parity.

0= Test for sign flag being set i.e. (minus)
NOT Negates the above conditionals.

USING THE ASSEMBLER

The -assembler is invoked by using the FORTH word CODE which creates a
dictionary entry with the name following CODE and then assembles the mnemonics
following. The example given below shows the use of the assembler in its simplest
form.

CODE ADD ( nl n2 — n3 as sum of nl + n2)
HL POP ( Get Ist number from stack )
DE POP ( Get 2nd number from stack )
DE DAD ( Add HL and DE result in HL )
HL PUSH ( Put result ot top of stack )
NEXT ( Jump to inner interpreter )

C; ( End of definition return to FORTH )

In the above example the word CODE creates a new dictionary header with the name
ADD. Note that the mnemonics that follow have their operands preceeding the
opcode which is the reverse of a standard assembler. The word NEXT compiles the JP
(1Y) instruction into the definition which forces a jump to the inner interpreter, THIS

15



MUST ALWAYS BE INCLUDED AS THE LAST WORD OF A DEFINITION.
The last word C; completes the assembly process and returns to normal input mode.
If the definition was created using the screen editor it may now be compiled using
LOAD, and tested.

The second example shown below takes two numbers from the stack and logically
OR’s them, the result being placed on the stack.

CODE ORR ( nl n2 — n3 as logical OR of nl and n2 )
HL POP ( Get 1st number )
DE POP ( Get 2nd number )
L AMOV (Load A fromL)
E OR ( OR accumulator with E )
AL MOV (Put resultin L)
HAMOV (Load A fromH)
D OR ( OR accumulator with D )
A HMOV (Put result in H)
HL PUSH ( Put 16 bit result to stack )
NEXT ( Jump to inner interpreter )

C; ( End definition )

Note the register useage with 8 bit loads i.c. the source register is first, followed by the
destination register e.g. L A MOV where L is the source and A is the destination.

The last example shows the use of the built in structures which are available as
standard in the assembler. These are the BEGIN — WHILE — UNTIL - etc. and the
IF — ELSE — THEN. These structures take care of any relative jumps that would
normally be written in assembly code. To aid using them a number of coditional tests
are provided these having already been detailed above. The example below defines a
word named NEWFILL which fills an area of memory with a specified byte.

CODE NEWFILL (addrnb - )
C L MOV ( Save IP into HL )
B H MOV o
DE POP ( Get byte to fill with )
BC POP ( Get count of bytes )
XTHL ( Exchange (SP) and HL )
XCHG ( Exchange DE and HL-)
BEGIN ( Start of NEWFILL loop )
B A MOV C OR ( Check for count zero )
0= NOT ( Test for zero flag not set )
WHILE ( While flag is not zero )
L A MOV DE STAX ( Store byte into address )
DE INX BC DCX ( Incermant address and decrement count )
REPEAT ( Go-back to begin )
BC POP ( Restore IP from stack )
NEXT C; ( Jump to inner interpreter and exit assembler )

Subroutines may be defined if required ( -although in FORTH this is not really
necessary ) using the word LABEL in the form :-

LABEL name (code mnemonics)

and may be called using the assembler CALL instructions e.g.

name CALL

Note that the ASSEMBLER vocabulary must be selected to use LABEL.

16



INTRODUCING FORTH.
4.1 - WHAT IS FORTH

FORTH is a somewhat unique language. It has been described by its creator as an operating system,
high level language, a set of development tools and a software design philosophy.

FORTH is fast when compared to interpreted languages such as BASIC, on average running ten to
twenty times faster. It is a very transportable language in that it adheres to well defined standards. A
FORTH program which was designed to run on one type of computer can usually be tansferred to a totally
different machine with very little modification, unlike BASIC which has many different dialects.

To write a program in FORTH you define new commands, or to give them their correct title WORDS,
in terms of WORDS which exist in the main core or VOCABULARY of the language. This approach gives
FORTH the advantage in that rather than actually writing a program you are in fact extending the language.
Using this approach you can create new control structures to add to, for instance the compiler.

FORTH can be considered to consist of four main parts:-

a). The dictienary.

b). The keyboard interpreter.
¢). The stacks

d). The disc.

4.2 THE DICTIONARY.

With the FORTH system up and running (see section 2) type in the FORTH word VLIST and press the
enter key (from now on denoted by (enter)). Ensure that the characters you type in are in upper case only as
FORTH will not understand them in lower case. You shouid see the screen fill up with many strange words.
These words make up the FORTH dictionary. Each of the words can be thought of as a command which
when typed in executes a specific routine. For example the word VLIST executes a routine which prints the
dictionary to the screen. If you examine this list closely you will see that the word VLIST is also included.

Now type in the word COLD followed by enter. The screen will clear and the original sign on message
will appear. The word COLD executes a routine which causes the system to reboot itself as if it had just been
loaded in from cassette.

A complete list of these words and their meaning is given in appendix 3 and 4 but do not try to absorb all
of these at once, familiarity will come with time. More than one word can be typed in at a time but they must
be separated by at least one space ¢.g.

VLIST VLIST VLIST (enter)

will cause the dictionary to print three times in succession. The listing can be exited in mid stream by pressing
CTRL/Q. Notice at the end of the listing the letters OK. appear. This is to let you know that FORTH has
executed all of the instructions you requested and is now waiting for further input.

Should you at any time get an error message, this will more than likely signify that you have made a
typing error, just retype in the commands taking care with spelling, spaces etc.

4.3 THE KEYBOARD INTERPRETER.

When you type in characters on the keyboard, as well as appearing on the screen, they are sent to an
area of memory known as the terminal input buffer. When you press the enter key a routine known as the
keyboard interpreter, searches through the dictionary and attempts to match up the words in the terminal
input buffer with the words in the dictionary. If it is successful it executes the routine associated with the
words, if it is unsuccessful it presumes that what was typed in was a number and therefore attempts to
convert the characters to a binary number. If this fails then the interpreter issues an error message (usually
error 0) which means the interpreter has not understood what was typed in. Try typing some random
characters into the computer to illustrate the error message. FORTH should echo whatever was entered via
the keyboard followed by the message error 0.

Now type in the following example being careful to insert spaces between each FORTH word.
Remember the phrase (enter) means press the enter key, don’t try and type it in.

: WELCOME CLS ."Welcome to Fig-Forth” CR ; ( enter )

If all went well you should get an OK prompt back, if you got an error message instead type in cold to

17



reboot the system and start again. Now type in the word WELCOME and press enter. Hey-presto, the screen
clears and the message "Welcome to Fig-Forth” appears with the OK prompt on the next line. If you now
examine the dictionary by typing VLIST you will see that WELCOME has been added at the top. We have in
fact created our first FORTH program or definition. So what exactly happened?

After we had typed in the line of text and pressed enter, the keyboard interpreter began to execute the
FORTH words in the line. The first word it encountered was the : (pronounced colon). This word tells the
interpreter that we wish to create a new definition called WELCOME. At this point FORTH switches to
compile mode and enters the name of the new word onto the dictionary. The words following WELCOME
are compiled onto the dictionary after WELCOME, as the execution or run time part of the defintion. The
FORTH word ; (semi-colon) stops compilation and returns to the normal execution mode of the
interpreter. We have introduced a few new FORTH words in this example the first, CLS, is exactly the same
as the BASIC command and simply clears the screen. The words .” and ” (pronounced dot quote and quote
respectively) are equivalent to the BASIC PRINT ” ” command. Any text between . ” and ” will be
printed onto the screen. It is important to note that a space must be included between the .” and the first
character of the text though this space is not actually printed. )

4.4 THE STACK.

All data that is processed by FORTH is done via an area of memory known as the data or parameter
stack. This stack can be likened to a stack of coins where the last item put on the stack is on the top. This type
of arrangement is called a last in first out stack or L.L.F.O. stack for short. To illustrate the action of the
stack type in the following:- ’

12 3 4 5 (enter)

FORTH should respond with the OK prompt. Now type the FORTH word . (pronounced "dot”) and

press enter, the number 5 will be printed. Type . and enter 4 more times and the numbers 4 3 2 1 should

. appear. What we have done is to initially put five numbers onto the stack and then retrieve them one by one.

Fig 2a shows the stack after we have typed in the five numbers and after we have retrieved and printed the
first two.

12345 (enter) « (enter) . (enter)
TOP TOP
5 3
4 2
3 1
BOTTOM
2 DATA STACK
1
BOTTOM
DATA STACK
Fig 2a

The important point to remember here, is that the numbers on the stack are destructively removed
NOT copied as we might have expected. If we therefore have a number on the stack which we need to use
twice, or even more times, we need some method of preserving it for future use. Fortunately FORTH
provides us with a WORD which allows us to do just that. Type in the following:-

SP! 1 2 3 DUP (enter) .S (enter)

You should see the numbers 1 2 3 3 appear on the screen.
‘We have introduced some new FORTH words here, so lets examine them one by one. The FORTH word SP!
simply clears the stack of all current entries, the FORTH word DUP duplicates the top entry on the stack
(exactly what we were-looking for) and the word .S prints out all the numbers on the stack without
destroying them. This command is particularly useful when you wish to see the state of the stack without
removing any values.

18



FORTH provides a number of words for manipulating the contents of the data stack. The major ones
are described below in diagramatic form with a short description of their function.

i) DUP - Copies the top entry on the stack.

3 3
2 3
1 2
1
BEFORE AFTER

ii) SWAP - Swaps the top two stack entries.

3 2

2 3

1 1
BEFORE AFTER

iii) OVER - The 2nd stack entry is copied to the top.

3 2
2 3
1 2
1
BEFORE
AFTER
iv)
ROT - The 3rd stack entry is removed to the top.
3 1
2 3
1 2
BEFORE AFTER

19



v) DROP - Removes the top stack entry.

3 2
2 1
1
BEFORE AFTER

vi) SP! - Clears the stack of all entries.

3
2 EMPTY
1

BEFORE AFTER

4.5 THE DISC.

Forth was originally designed to support data and program storage on disc. Programs are traditionally
stored on disc in 1K byte blocks or screens made up of 16 lines of 64 characters. These screens could be called
from disc as required and stored by FORTH in an area of RAM known as the block buffers. Sufficient block
buffers were allocated to store only two or three screens of data at any one time. This did not pose a problem
for large programs as the process of reading and writing screens to and from disc was very fast and was also
transparent to the user, access being carried out under control of the FORTH system.

The AMSTRAD CPC-464 version of FORTH does not support a real disc system. Instead it allocates
14K of memory to pretend it is a disc system. FORTH screens are stored in this area of memory (14 screens
maximum) and can be read or written to in exactly the same way as would be done in a true FORTH disc
enviroment. The FORTH word LIST will allow you to examine the contents of any of the screens available.
Type in the following:-

1 LIST (enter)

You should see the screen clear and 16 lines numbered 0 to 15 will be displayed together with the screen
number you are looking at. As mentioned previously these screens are organised as 16 lines of 64 characters
and it is on these screens that large programs would be developed and tested. To allow text to be placed on
the screens, a full screen editor is available and is fully described in section 3.9.

4.6 NUMBERS AND ARITHMETIC

FORTH handles numbers in a somewhat unusual way . To start with it can only deal with integers
usually in the range of -32767 to +32768 (16 bit signed numbers) though it can deal with larger integers which
we will deal with later. Its second unusual point is the way we write arithmetic in FORTH. To add two
numbers in FORTH we must first put the numbers on the stack and then tell FORTH what we wish to do
with the numbers. Lets take a simple example to show what we mean.

12 23 + . (enter)

Here we have two numbers 12 and 23 which we wish to add together and then print the result. First of all
the numbers are put onto the stack and then the operator (the plus sign) tells FORTH to add together the top
two stack entries and place the result onto the top of the stack. The FORTH word . (dot) prints the top stack
entry which in this case is our result. This method of handling numbers, where the operator comes after the
numbers is known as POST FIX or REVERSE POLISH NOTATION and is fundamental to all FORTH
arithmetic. Lets try some more simple examples to familiarise ourselves with this method of working. Here

20



the normal method of writing the expression is shown on the left with the equivalent FORTH expression on
the right. Type in the examples making sure that they work and then try to see exactly what is happening to
the stack. To help refer to appendix 4 for a full list and description of the operators.

24+12+10=46 24 12 10 + + . (enter)

In the above example note there are two plus signs, one for each stage in the addition.
132-10=122 132 10 - . (enter)
50 +10-6=54 50 10 + 6 - . (enter)

In this example where we have mixed operators we must put the relevant sign after the numbers we are
operating on. The first part adds the numbers 50 and 10 putting the result on the stack then we subtract the 6
leaving the final result on the top of the stack.

5+x6=30 56 ~ . (enter)

Here we are using the FORTH word * which multiplies the top two numbers on the stack leaving the result
on the stack.

30/5=6 30 5/ . (enter)

This is the division operator used in FORTH. This divides the second stack entry (the 30) by the top entry
(the 5) leaving the result on the top of the stack.

There are many other operators in FORTH but it is impossible to deal with them in this short
introduction. In particular there are operators provided to work on 32 bit or double length numbers. One
double length number is equivalent to two single numbers and in fact occupies two stack positions in
memory. It is not intended to delve any further into double numbers other than saying that they greatly
increase the number handling capacity of FORTH (into millions).

The only satisfactory way to become aquainted with FORTH number notation is practice. Try
examples of your own checking the results as you proceed creating more complex expressions as you master
the simple ones. If you have difficulty it is suggested that you purchase one of the many FORTH tutorials on
the market (see appendix 5).

4.7 MAKING DECISIONS

FORTH supports a structure which is very similar to the IF statement used in BASIC.
This is the IF - - ELSE - - THEN statcment.
The general form of this in FORTH is:

1). The word IF which checks the top stack value to see if it is "true” i.e. a non zero value.
2). Any number of FORTH words which are executed if the top stack entry was true.

3). The word ELSE which is optional, followed by any number of FORTH words that are
executed if the top stack entry found by IF was "false”.

4). The FORTH word THEN which terminates the expression. This must be included unlike
some BASICS which allow this part to be ommited.

The use of this can be best illustrated by an example. Lets say we have an electronic circuit connected to
our computer which monitors the temperature of a refrigerator. We need to display on the screen a warning
message if the temperature inside the fridge ever rises above zero degrees centigrade. The particular part of
the FORTH program which does this could be written as shown below.

: TEMPERATURE
DUP 0>
IF . WARNING FRIDGE DEFROSTING " DROP
ELSE ." Temperature is " . ."degrees centigrade”
THEN;
As this is-part of a main program it is defined as a word called TEMPERATURE, The colon as we have
already mentioned starts the compile mode within FORTH to create a new defintion. The DUP statement

duplicates the top stack entry which in this case we presume to be the refrigerator temperature put there by
some other FORTH word which actually did the measuring. The FORTH word 0> checks the top stack

21



entry (removing it in the process) to see if it-is greater than zero. If it is then the test was "true” and a 1 is
placed on the top of the stack. If it is zero or less than, then the test leaves a "false” or 0 on the stack.

The IF takes this stack value and IF IT IS TRUE it prints the warning message on the screen. We then
DROP the duplicated temperature value from the stack as we no longer require it. IF IT IS FALSE the
warning message and- DROP are ignored and the ELSE part is executed which prints the temperature
message. Note the . (dot) between the two print statements, this removes the duplicated temperature value
from the stack and prints it on the screen. The THEN terminates the IF structure and the semi-colon
completes the definition.

Type in the above example using the screen-editor, compile it and then try it using different values,
positive and negative, on the stack as shown below.

10 TEMPERATURE (enter) will print the warning message.
-5 TEMPERATURE (enter) will print the temperature.

4.8 REPETITION.

FORTH supports several methods for repeating a sequence of events. The first of these is the DO
LOOP and is an equivalent of the BASIC FOR NEXT loop. Type in the following example an run it You
should see the numbers 1 to 10 on the screen.

:TEST1 111 DO1.LOOP;

This routine we have called TEST1. The numbers 11 to 1 represent the start and end values of the loop.
The loop starts with a value of 1 and executes all code between the words DO and LOOP, incrementing the
loop value at each pass until it reaches the limit, which in this case is 11. Note that when the limit is reached,
the loop falls through i.e. it is not executed for the 11th time. The FORTH word I places the current loop
index onto the stack where it can be printed using the FORTH word . (dot). This gives us our count from 1 to
10 on the screen.

The loop can be made to count in increments of more than one step using the FORTH word +LOOP
(equivalent to the BASIC STEP command) as shown below.

:TEST211 1 DOI.2+LOOP;

In this example the value of 2 is added to the loop index to force the loop to increment by 2. In this case
the loop ends at the count of 9 as-the next value would equal (or exceed depending on the index) the loop
limit. The loop can be made to count downwards as shown in example TEST3.

:TEST3111 DOI. -1 +LOOP ;

Note that the loop limits are reversed compared to the previous examples and that the index is incremented
in steps of -1. Finally we have an example of nesting more than one DO LOOP in a routine.

: SQUARE CLS 250 150 ORIGIN
1000
DO 100 0
DO 1JPLOT
LOOP
LOOP;

This example which we have called SQUARE plots a square onto the screen using the the graphics
extensions supplied as part of the Fig-Forth program. There are several new words introduced here which
may need some explanation.

The first word is ORIGIN which is equivalent to the BASIC command of the same name ORIGIN
takes two numbers from the stack, in this case 250 and 150 and locates the graphics cursor at the xand y co-
ordinates respectively.

The word PLOT lights up a pixel on the screen at the x and y co-ordinates given by the top two numbers
on the stack. In this example these co-ordinates are supplied by the FORTH words I and J which place the
respective loop indexes onto the stack.

As we have already mentioned, this routine plots a square 100 pixels by 100 pixels onto the screen, The
time taken to plot all of the pixels (10000 of them) is approximately 4.5 seconds. An equivalent routine
written in Basic takes around 24 seconds. This gives FORTH a 5 fold speed increase in plotting over BASIC.

22



In practice FORTH can run anywhere between 5 to 20 times the speed of BASIC depending on the
application and how well written the program is.

Forth supports several other repetitive structures based on the word BEGIN, the first and simplest of
these being the BEGIN AGAIN expression.

This structure in essence forms a closed loop within a program and in its simplest form cannot be exited!
: CLOSED-LOOP BEGIN .” This will never end ” AGAIN ;

If you try the above example be warned, you will have to reset the computer and reload FORTH as the
program cannot be stopped once it is running. In essence all that happens is that the message which is
enclosed between the BEGIN and AGAIN statement is printed on the screen repeatedly. This particular
structure is usually used as the main body of a finalised program which usually will need to be of a
continuous loop form.

The second BEGIN structure is the BEGIN UNTIL. This structure has a built in test which allows the
loop to be exited. The usual format is:-

a) The-word BEGIN which marks the beginning of the loop.

b) Any sequence of FORTH words which will end with the data stack holding a boolean
flag, either a 1 or 0 representing true or false respectively.

¢) The word UNTIL which removes the flag from the stack and if it is true the loop is
exited, if- however the flag is false the loop returns to the code after BEGIN and is
executed once again.

Lets have a look at an example using BEGIN UNTIL.

: Y/N ( Accepts yes or-no reply. Stack 1 = yes 0 =no )
BEGIN .” Answer yes or no ” KEY
32 ORDUP 121 =
IF 1 1 ELSE DUP 110 = )
IF 0 1 ELSE CR .” INCORRECT KEY PRESSED ” CR DROP 0
THEN
THEN
UNTIL
SWAP DROP ;

This particular example is a very useful routine which prints a prompt message and waits for akey to be
pressed. If the key is either "Y” or "N” (in upper or lower case) then a 1 or 0 is put onto the stack in response
which can be used to call an appropria}te routine, Lets examine its operation closely.

The routine is called Y/N which helps to describe its function. The parenthisis which follow are equivalent
to REM statements in Basic, any text enclosed between them being ignored by the compiler. The BEGIN
word indicates the beginning of the loop. The prompt message is first displayed and then the FORTH word
KEY waites for a key to be pressed, the ascii equivalent of this character being placed onto the top of the
stack. We then convert the ascii number to upper-case (if it is not already so) by logically OR-ing it with
decimal 32. The number is then duplicated using DUP and compared to the number 121, which is the ascii
number for the letter "Y”. IF itisa "Y” the numbers 1 1 are placed on the stack and the loop drops through to
the UNTIL which removes the top stack entry and if it is true i.e non zero it exits the loop. The words SWAP
DROP exchange the stack contents and remove the initial character which was duplicated at the beginning
of the routine. This leaves a 1 on the top of the stack which is to indicate that the response from the keyboard
was of a "YES” nature.

If the initial test for a "Y” response fails we then test for a no response by comparing with the number
110 which is the ascii representation for upper-case "N”. If this passes the two numbers 0 and i are put on the
stack. The 1 is to enable UNTIL to exit the loop and the 0is to indicate the”NO” response from the keyboard.
The word CR simply prints a carriage return and line feed thus displaying the text messages on new lines.

If both tests fail then we can assume that an incorrect key was pressed, therefore we print the error
ge, DROP the duplicated character and place a 0 onto the stack. When UNTIL retrieves this 0 it jumps
back to the code after BEGIN which prints the prompt message again and waits for keyboard input.

23



The last of these types of structures is the BEGIN WHILE REPEAT, whose general format is given
below.

a). The word BEGIN which marks the start of the loop.

b). Any sequence of FORTH words which result in a boolean flag being placed on the top of
the stack.

¢). The word WHILE which tests the stack value and if it is true executes the code
following it. (see d). If the stack contents are false the loop is terminated.

d). Any sequence of FORTH words which form the main body of the loop.
¢). The word REPEAT which sends control back to the code after BEGIN.

Below is a simple example which should illustrate the function of this structure.

: TEST-KEY ( Loops until space-bar is pressed )
BEGIN .” Press the space-bar " CR
KEY 32 <>
WHILE .” I said *
REPEAT
.” Thank you " ;

In this example we start by printing the prompt message after the BEGIN. We then perform a carriage
return and wait for a key to be pressed, the ascii value of this key being placed onto the stack. We then test to
see if the key was not equal to 32 (the-ascii code for the space-bar). If the result was not equal to 32 then the
satement was true and a 1 is placed on the stack.

This flag is removed and tested by the WHILE and if true the code between WHILE and repeat is
executed and control is sent back to the code after BEGIN i.e. the prompt message. This repeats until we
press the space-bar which terminates the loop (the test by WHILE is now false) and prints the "Thank you”
message.

Run this program and initially press any key other than the space-bar. Notice how on the second and
subsequent passes the messages are printed together as one. This is because there is no carriage return after
the message "I said”. When you do press the space-bar the loop will fall through and the “Thank you”
message will be printed.

4.9 INPUT/OUTPUT

Compared with BASIC, FORTH does-not provide easy means for inputing and outputing data to a
program. We have already scen three methods. The word KEY which reads a single character from the
keyboard and places its ascii value on the top of the stack and the words.” and ” which print an enclosed
string onto the display. There is also the word . (dot) which prints the top stack entry on the display.

There are several input words in FORTH, however the only-one we shall concern ourselves with is the
word QUERY. This word reads characters typed in at the keyboard terminated by the enter key, up to a
maximum of 128 and stores them in the terminal input buffer which was decribed in section 4.3.

The example below used the word QUERY to create a routine which will read in an integer number
from the keyboard and place the number on the stack.

: INPUT QUERY 13 WORD HERE NUMBER DROP ;

We have called this very useful routine INPUT as it behaves in a similar fashion to BASIC command of
the same name.

The word query will allow us to type characters into the keyboard which in this case will be a valid
number. The word WORD (no it is not a mistake) reads all text from the terminal input buffer until if
reaches a delimiter which was put on the stack before WORD, in this case the 13 which represents a cariage
return. WORD transfers the text to the first free location in the dictionary leaving a character count in the
first byte. The word HERE puts this dictionary address onto the stack for NUMBER which converts a
stream of ascii characters into a valid number, the resulting number being put onto the stack.

So much for inputing information, what about output. Again there are several words provided which
allow-for outputing data, some of these we have already met. The output operator we will deal with-now is
the word TYPE. This word takes an address and byte count from the stack and prints out the count of ascii
characters at that address.

24



To illustrate this first enter the screen editor at screen one and type in a line of characters on line 0. Then
exit the editor and type in and run the example below.

: PRINT 8 BLOCK 50 TYPE ;

You should see the first 50 characters that were typed in screen 1 displayed on the screen. This routine
which we have called PRINT uses a word called BLOCK which puts the address of line 0 screen 1 onto the
stack . TYPE takes this and the charactercount of 50 and prints out that ammount of characters to the
display.

VARIABLES AND CONSTANTS
4.10

Variables and constants are a concept found in most high level computer languages and FORTH is no
exeption. However before we examine these it is a good time to introduce three new FORTH words namely
@,%and !

The word @ takes an address from the stack and replaces it with the 16 bit value stored at that address, ,
(similar to BASICS PEEK command). This value can then be displayed using. (dot). The word ? combines
both @ and . (dot) and prints the value directly to the display. For example :-

HEX3FFB@ . or
HEX 3FFB ?
will both print the 16 bit value contained at address 3FFB hex onto the display.

The word ! is roughly equivalent to the BASIC POKE command and takes an address and a 16 bit value
from the stack and stores the value at that address ¢.g. '

HEX 13E3 1000 !

will store the value 13E3 into locations 1000 hex and 1001 hex, (remember its a 16 bit value therefore must
be stored in two memory locations).

Having examined the above words we can now have a look at variables which are defined in the form:-
(n) VARIABLE name
where (n) is the initial value and name is the label we wish to give the variable e.g.
5 VARIABLE MONTH
will initialise a variable calied MONTH to the value 5 (to represent the month of May). We can read this
variable using :-
MONTH @ . or more easily
MONTH ?
We can modify the contents of MONTH by using the word ! e.g.
6 MONTH !
A constant is defined in similar fashion e.g.
12 CONSTANT DOZEN

the only difference being that once defined a constant cannot (and should not) be altered. To read the
constant we do not need to use the word @ as is required by a variable . we only need say:-

DOZEN .
to display the constant value on the screen.

This then covers our short introduction into the world of FORTH. It is by no means complete nor has it been
extensive. In reality we have only scratched the surface of the words available and there use. No attempt has
been made to teach FORTH programming as this itself would fill a large volume of text.

What it is hoped is that you have been able to develop a curiosity for the language which you can now
develop, if necessary with the help of one of the many texts available on the market. Appendix 5 gives details
of books recommended by the author.

25



APPENDIX 1

ERROR CODES

The FIG-FORTH System issues the following error codes. If the error code is followed by an OK prompt
then the message is a warning only. If OK is absent then there was a true error which has caused the system
to ABORT its current operation.

ERROR 0 (UNDEFINED)  The word is not in the context or current vocabulary. If VLIST shows it to
be present in the dictionary, then the word was never correctly defined, i.e.
an error occured during compilation.

ERROR 1 (STACK EMPTY) An attempt has been made to remove an item from an empty stack.

ERROR 4 (NOT UNIQUE)  The current definition name glready exists in the dictionary. The new word
will supersede the old one unless it is removed with FORGET.

ERROR 7 (DICTIONARY  This word is issued if the parameter stack or dictionary come within 128
OR STACK FULL) bytes of each other, i.e. close to over-writing one another.

ERROR 17 (COMPILATION The referenced word should only be used during complation
ONLY)

ERROR 18 (EXECUTION The referenced word should only be used during execution.
ONLY)

ERROR 19 (NOT PAIRED) The word shown has no pair, e.g. a LOOP w1thout a DO or REPEAT
without a BEGIN etc.

ERROR 20 (INCOMPLETE) The statement has not been completed, e,g, an IF without its completing
THEN.

ERROR 21 (PROTECTED) An attempt has been made to FORGET a word behind the protective
FENCE.

ERROR 22 (LOAD ONLY) The word shown must be used only when loading.

APPENDIX 2

COLD START PARAMETERS

The following is a list of the cold start parameters used at power up. These may be modified by the
experienced FORTH user, to adopt the system to their own requirements, by use of the FORTH word
+ORIGIN, which places the base address and the offset on the stack.

oC +ORIGIN TOPMOST WORD IN.FORTH VOCABULARY. This is the address from
where dictionary searches will commence. Modified by the FORTH word
SYSDUMP.

0E +ORIGIN Backspace CHARACTER (included for FIG-FORTH compatability only)

10 +ORIGIN Pointer to user area.

12 +ORIGIN Pointer to base of parameter stack.

26



+ORIGIN
+ORIGIN
+ORIGIN
+ORIGIN

+ORIGIN

+ORIGIN

Pointer to base of return stack.
Pointer to base of terminal input buffer.
Maximum name length. Used by WIDTH and preset to 31.

This sets the FENCE below which words will not be forgotten. Points to the
last word defined after power up and is modified by the FORTH word
SYSDUMP.

Address of dictionary pointer at power up. Modified by the FORTH word
SYSDUMP.

Pointer to vocabulary link at power up.

FORTH LANGUAGE GLOSSARY

This glossary contains all of the word definitions utilised in the
implementation of FIG-FORTH for the AMSTRAD CPC-464.

The first section details word definitions which are extensions to the basic
FIG-FORTH language. -
The second section gives details of the FIG FORTH vocabulary.

NOTATION USED

The first line of cach definition shows a symbolic view of the stack
conditions before and after execution of the word as shown below.

XX XX _—— - XX XX
Stack condition Execution Stack condition
prior to execution after execution

Incach case, i.e. before and after execution, the top stack parameter is to the

right.

The stack notation used is as follows:-

addr Memory address

b 8 bit byte (MSB of 16 bit word = 0)

c 7 bit ASCII CHARACTER (Top 9 bits = 0)

d 32 bit signed double length integer

f Boolean flags (cithier true or false)

ff Boolean false flag, i.c. 0

n 16 bit signed integer

u 16 bit unsigned integer

tf Boolean true, i.e. non-zero

APPENDIX 3

FIG-FORTH EXTENSIONS

). Stack operators:-

.S Non destructive print out of stack contents.

2* nl n2 —n3
Multiplies nl by n2 to leave n3 (faster than 2 «)

2DROP nl n2 -

Drops 2 single or 1 double number from the stack.

27



2DUP

2 OVER

2 SWAP

PICK

ROLL

nl n2 -— nl n2 nl n2
Duplicates top two numbers or 1 double number

nl n2 n3 n4 - nl n2 n3 n4 nl n2
copies 2nd pair of numbers or 2nd double number to top of stack.

nl n2 n3 n4 —- n3 n4 nl n2
Swaps Top two paids of numbers or two double numbers to the stack.

n -~ nl
Copies the nth item on the stack to the top.

n — nl
Removes the nth item on the stack to the top.

b) SYSTEM OPERATORS

0TIME

7TIME

BELL
CASE

CLS

EDITOR

EDIT

GET

MYSELF

PRINTER

GETKEY

PUT

RAND

Sets the internal timer to zero and begins counting cycle

— d

Puts the internal timer count onto the stack as a double number. The timer
continues counting. The number may be printed using D.

Sounds a short beep

See example
Associated words - OF, ENDOF, ENDCASE

: CASE-EXAMPLE (N - )

-CASE

1 OF ."one” ENDOF
2 OF ."two” ENDOF
5 OF ."five” ENDOF
0 OF ."zero” ENDOF
ENDCASE;

Case executes the routine associated with the top stack value if present, else
control falls through to words after endcase.

Clears the V.D.U. screen.

The name of the editor vocabulary. Execution makes the editor the context
vocabulary.

n—
Invokes the screen editor at screen n.

nl n2 —
Loads screens nl to n2 from cassette.

Compiles C.F.A. of definition being compiled into dictionary therebye
allowing a word to “call” itself recursively.

Directs all output to the printer

— ff (no key pressed)

- ¢ tf (Key pressed)

Scans the keyboard for a key depression. If no key is pressed returns a false
flag. If a key is pressed returns the ascii code for the key and a true flag.
nl — n2

Saves screens nl to n2 to cassette.

nl —--n2
Generates a random number n2 in the range 1 to nl

28



SCREEN

SYSDUMP

TASK

TLOAD

TSAVE

WAIT

Directs all output to the V.D.U. used after the PRINTER command.

Saves current version of forth to cassette including all new definitions.
Forth may be reloaded in the normal way.

A dummy word marking the end of the initial precompiled vocabularies.

nl ADDR -
Loads nl bytes from cassette and stores at address ADDR.

nl ADDR. —
Saves nl bytes from addr to cassette

Suspends operation and waits for a key torbe pressed. Operation then
resumes.

¢) GRAPHICS AND COLOURS

BORDER

CLG

DRAW

DRAWR

EXCHANGE

GPATER

GPEN

GWINDOW

INK

INVERSE

LOCATE

MODE

MOVE

MOVER

nl n2 —
Sets Border to a pair of colours nl, n2. For non flashing border nl = n2

Clears the graphics screen.

nl n2 — .
Draws a line in current graphics pen ink from position of graphics cursor to
points nl and n2

nl n2 —
Draws a line in current graphics pen ink from the position of the graphics
cursor to a point which is the offset of nl n2.

nl n2 —
Swaps states of streams nl and n2

nl —
Sets graphics paper ink to colour nl

nl —

Sets pen number for graphics pen

nl n2 n3 n4 —

Creates graphics window nl = Top, n2 = Bottom n3 = Left, n4 = Right
nl n2 n3 —

Sets ink n3 to a pair of colours nl and n2, if non flashing nl1 = n2,

Exchanges current per and paper inks

nl n2 —
Move cursor ot position nl, n2 of current text window. n1 column (1-80) n2
is line (1-25)

nl —
selects screen mode, nl taken mod 4.

nl n2 —
Moves graphics cursor to position nl (X-DIR) and n2 (Y-DIR)

nl n2 —
Moves the graphics cursor to a point relative of its current position by nl
(X-DIR), n2 (Y-DIR)

29



ORIGIN

PAPER

PEN

PLOT

PLOTR.

STREAM

TAG

TEST

TESTR

TRANSPARENT

WINDOW

1-ARRAY

2-ARRAY

STRING

INPUTS

AMP-ENV

CHANNEL

CONTINUE

DURATION

ENT

nl n2 —
Sets the x, y origin of the graphics cursor

nl -
Sets colour of paper to nl

nl —
Selects pen for current screen mode

nl n2 —
Plots a point in the currrent graphics pen at location nl, n2

nl n2 —
Plots a point on the screen in the current graphics pen at a postion from the
current graphics cursor offset by nl and n2

nl —
Selects text stream nl, n2 must be in the range 1-7

cl —
Sends character cl to graphics cursor
nl n2 —n3

Test the point on the graphics screen absolute from the cursor, specified by
nl (x-dir) and n2 (y-dir) leaving the current graphics pen number at that
point as n3.

nl n2 ~— n3

Test the point on-the graphics screen offset by nl and n2 from the graphics
cursor. Returns to the top of the stack the graphics pen number n3 at that
point.

nl —

nl = 0 Disables transparent. option

nl = 1 Enables transparent option

nl n2 n3 nd4 —

nl = Top, n2 = Bottom, n3 = Left, n4 = Right

d) STRINGS AND ARRAYS

nl — (name)
Creates a single dimension array called (name) of nl elements

nl n2 — (name)
Creates a two dimension array called (name) of nl rows by n2 columns.

nl — (name)
Creates string storage space of nl spaces called (name)

pfan —
Used to read input characters into a predifined storage space ( see STRING ).

e) SOUND FACILITIES
nl (name) —
Assigns amplitude envelope n to sound block (name)

nl (name) —
Assigns channel(s) nl to sound block (name)

Releases all sounds which have been held

nl (name) —
Sets the duration of sound block (name) to length nl

Creates a tone envelope. For a full description refer to section 3.12

30



ENV

FREEZE

NOISE

PERIOD

PLAY

RELEASE

Creates an amplitude envelope. For a full description refer to section 3.12

Stops all sounds in mid flight. may be restarted by using CONTINUE.

nl (name) —
Adds a noise component nl to sound block (name).

nl (name) —
Sets the period of the note of sound block (name) to nl.

(name) —
Executes the sound block (name). if the sound queues are full returns an
error message and executes ABORT.

nl —
Releases a sound on channel(s) nl which was previously held using
SHOLD.

RENDEZVOUS nl (name) —
Will cause sound block (name) to rendezvous with channel(s) (n1).
RESET —
Reset the sound manager and shuts down the sound chip causing all sounds
to stop immidiately.
SFLUSH (name) —
Sets the flush bit in sound block (name)
SHOLD (name) —
Sets the hold bit of sound block (name)
SOUND
This is the main sound block creation definition. For a full description refer
to section 3.12
SQ (n)—
Returns the status of channel (n)
SWAIT (n) —
Forces channel (n) to wait until there is space on the sound queue before
issuing any more sounds to the queue.
TONE-ENV nl (name) —
Assigns tone envelopes nl to sound block (name)
VOLUME nl (name) —

Sets ihe volume of sound block (name) to nl

31



ICSP

>

#S

o)

(;CODE)

(+LOOP)

(ABORT)

(DO)

(FIND)

(LINE)

APPENDIX 4 FORTH GLOSSARY

n addr —
Store 16 bits of n at address. Pronounced “store”.

Save the stack position in CSP. Used as part of the compiler security.

dl — d2

Generate from a double number d1, the next ascii character which is placed
in an output string. Result d2 is the quotient after division by BASE, and is
maintained for further processing. Used between <#and#> . See #S

d -—-"addr count
Terminates numeric output conversion by dropping d, leaving the text
address and character count suitable for TYPE.

dl —d2
Generates ascii text in the text output buffer, by the use of #, until a zero
double number n2 results. Used between <#and#>

— addr

Used in the form:” nnnn. As a compiler directive, executes in a colon-
definition to compile the address as a literal. If the word is not found aftera
search of CONTEXT and CURRENT, an appropriate error message is
given. Pronounced "tick”.

Used in the form: ( cccc). Ignore a comment that will be delimited by a right
parenthesis on the same line. May occur during execution or in a colon-
definition. A blank after the leading parenthesis is required.

The run-time procedure, compiled by .” which transmits the following in-
line text to the selected output device. See .”

The run-time procedure, compiled by ; CODE, that rewrites the code field
of the most recently defined word to point to the following machine code
sequence. See ;CODE.

n—
The run-time ‘procedure: compiled by +LOOP, which increments the loop
index by n and tests for loop completion. See +LOOP.

Executes after an error when WARNING is -1. This word normally
executes ABORT, but may be altered (with care) to a user’s alternative
procedure .

The run-time procedure compiled by DO which moves the loop control
parameters to the return stack. See DO.

addrl addr2 --- pfa b tf (ok)

addrl addr2 — ff (bad)
Searches the dictionary starting at the name field address addr2, matching
to the text at addrl. Returns parameter field address, length byte of name
field and boolean true for a good match. If no match is found, only a
boolean false is left.

nl n2 - addr count
Convert the line number nl and the screen n2 to the disc buffer address
containing the data. A count of 64 indicates the full line text length,

32



(LOOP)

(NUMBER)

*

The run-time procedure compiled by LOOP which increments the loop
index and test for loop completion. See LOOP.

dl addr ~ d2 addr2

Convert the ascii text beginning at addr1+1 withregard to BASE. The new
value is accumulated into double number d1, being left as d2. Addr2 is the
address of the first unconvertable digit. Used by NUMBER.

nl n2 --- prod
Leave the signed product of two signed numbers.

*/ nl n2 n3 — n4

*/MOD

+

+BUF

+LOOP

+ORIGIN

s

Leave the ratio n4 - nl*n2/n3 where all are signed numbers. Retention of
an intermediate 31 bit product permits greater accuracy than would be
available with the sequence: nl n2 * n3 /

nl n2 n3 ~ n4 nS
Leave the quotient n5 and remainder n4 of the operation n1*n2/n3 A 31 bit
bit intermediate product is used as for */,

nl n2 — sum

Leave the sum of nl+n2.

nl addr —

Add n to the value at the address. Prounced “plus-store”

nl n2 — n3

Apply the sign of n2 to nl, which is left as n3

addl — addr2 f

Advance the disc buffer address addrl to the address of the next buffer
addr2. Boolean f is false when addr2 is the buffer presently pointed to by
variable PREV.

nl — (run)

addr n2 -— (complete)

Used in a colon definition in the form: DO ... n1 +LOOP. At run-time,
+LOOP selectively controls branching back to the corresponding DO
based on nl, the loop index and the loop limit. The signed increment nl is
added to the index and the total compared to the limit. The branch back to
DO occurs until the new index is equal to or greater than the limit(n1> 0), or
until the new index is equal to or less than the limit (n1 < 0). Upon exiting the
loop, the parameters are discarded and execution continues ahead.

At compile time, +LOOP compiles the run-time word (+LOOP) and the
branch offset computed from HERE to the address left on the stack by DO.
n2 is used for compile time error checking.

n — addr

Leave the memory address relative by n to the origin parameter area. n is
the minimum address unit, either byte or word. This defintion is used to
access or modify the boot-up parameters at the origin area.

n—

Store n into the next available dictionary memeory cell, advancing the
dictionary pointer. (comma)

nl n2 — diff

Leave the difference of nl-n2.

->

Continue interpretation with the next disc screen. (pronounced next-
screen).

33



-DUP

-FIND

-TRAILING

.LINE

/MOD

0123

0<

0BRANCH

1+

2+

nl — nl (if zero)

--nl nl (non-zero)
Reproduce nl only if it is non-zero. This is usually used to copy a value just
before IF, to eliminate the need for an ELSE part to drop if.

— pfa b tf (found)

— ff (not found)
Accepts the next text word (delimited by blanks) in the input stream to
HERE, and searches the CONTEXT and then CURRENT vocabularies for
a matching entry. If found, the dictionary entry’s parameter field address,
its length byte, and a boolean false is left.

addr nl — addr n2

Adjusts the character count nl of a text string beginning at address to
suppress the output of trailing blanks. i.e. the characters at addr+nti are
blanks.

n—
Print a number from signed 16 bit two’s complement value, converted
according to other nemeric BASE. A trailing blanks follows. Pronounced
"dot”.
Used in the form:

.” ceec”
Compiles an in-line string cccc (delimited by the trailing ") with an
execution proceedure to transmit the text to the selected output device. If
executed outside a definition, .” will immediately print the text until the
final ”. The maximum number of characters may be an installation
dependent value. See (.”).

line scr —
Print on the terminal device, a line of text form the disc by its line and screen
number. Trailing blanks are suppressed.

nl n2 —
Print the number nl right aligned in a field whose width is n2. No following
blank is printed.

nl n2 — quot
Leave the signed quotient of nl/n2.

nl n2 — ram quot
leave the remainder and signed quotient of nl/n2. The remainder has the
sign of the dividend.

—n
These small numbers are used so often that it is attractive to define them by
name in the dictionary as constants.

n—f
Leave a true flag if the number is less than zero (negative), otherwise leave a
false flag.

n —-f
Leave a true flag if the number is equal to zero, otherwise leave a falseflag.

f—

The run-time proceedure to conditionally branch. if f is-false (zero), the
following in-line parameter is added to the interpretive pointer to branch
ahead or back. Compiled by IF, UNTIL, and WHILE.

nl — n2 .
Increment nl by 1.
nl — n2

Leave nl incremented by 2.



;CODE

<#

<BUILDS

>R

Used in the form called a colon definition
1€CCC vy

Creates a dictionary entry defining cccc as equivalent to the followmg
sequence of Forth word definitions ‘—’ until the next *;’ or ,CODE’. The
compiling process is done by the text interpreter as long as STATE is non-
zero. Other detail are that the CONTEXT vocabulary is set to the
CURRENT vocabulary and that words with the precedence bit set (P) are
executd rather than being compiled.

Terminate a colon-definition and stop further compilation. Compiles the
run-time ;5.

used in the form : ccce ... ;CODE assembly mnemonics. Stop compilation
and terminate a new defining word cccc by compiling (CODE). Set the
CONTEXT vombulary to ASSEMBLER, assembling to machine code the
following mnemonics.

‘When cccc later executes in-the form cccc nnnn. The word nnnn will be
created with its execution proceedure given by the machine code following
ccce. That is, when nnnn is executed, it does so by jumping te the code after
nnnn. An existing defining word must exist in cccc prior to ;CODE.

Stop interpretation of a screen. ;S is also the run-time word compiled at the
end of a colon-definition which returns execution to the calling proceedure.

nln2 —f
Leave a true flag if nl is less than n2; otherwise leave a false flag.

Setup for pictured numeric output formatting using the words:
## #S SIGN #
The conversion is done on a double number producing text at PAD.

Used within a colon-definition: :cccc: < BUILDS ... DOES >
Each time cccc is executed, < BUILDS defines a new word with a high-level
execution procedure. Executing cccc in the form:

cccc nonn

uses BUILDS to create a dictionary entry for nnnn with a call to the
DOES> part for nnnn. When nnnn is later executed, it has the address of
its parameter area on the stack and executes the words after DOES> in
ccec. < BUILDS and DOES > allow run time procedure to written in high
level rather than in assembler code (as required by ;CODE).

nl n2 — f

"Leave a true flag if nl = n2; otherwise leave a false flag.

nln2 —f
Leave a true flag if nl is greater than n2; otherwise a false flag.

n —

Remove a number form the computation stack and place as the
most accessable on the return stack. Use should be balanced with >R
in the name definition.

addr --
Print the value contained at the address in free format according to
the current base.

35



COMP
2CSP
?7ERROR
7EXEC
LOADING

7PAIRS

ISTACK

?TERMINAL

ABORT

ABS

AGAIN

ALLOT

AND

B/BUF

B/SCR

Issue error message if not compiling.

Issue error message if stack position differs from value saved CSP.

fn-—
Issue an error message number n, if the boolean flag is true.

Issue an error message if not executing

Issue an error message if not loading

nl n2 —
Issue an error-message if nl does not equal n2. The message
indicates that compiled conditions do not match.

Issue an error message if the stack is out of bounds. This defimiuon
may be installation dependent.

- f
Perform a tst of the terminal key-board for actuation of the
CTRL/Q key. A true flag indicates actuation.

addr —- n
Leave the 16 bit contents of address.

Clear the stacks and enter the execution state. Return control to the
operators terminal, printing a message appropriate to the
installation.

n -—u
Leave the absolute value of n as u.

addr n — (compiling)

Used in a colon-definition in the form:

BEGIN ... AGAIN

At run-time, AGAIN forces execution to return to corresponding
BEGIN. There is no effect on the stack. Execution cannot leave this
loop (unless R DROP is executed one level below).

At compile time, AGAIN compiles BRANCH with an offset from
HERE to addr. n is used for compile-time error checking.

n --—-
Add the signed number to the dictionary pointer DP. May be used
to reserve dictionary space or re-origin memory. nis with regard to
computer address type (byte or word).

nl n2 — n2
Leave the bitwise logical and of nl and n2 as n3.

—n ‘
This constant leaves the number of bytes per disc buffer, the byte
count read from disc by BLOCK.

-—n

This constant leaves the number of blocks per editing screen. By
convention, an editing screen is 1024 bytes organized as 16 lines of
64 characters each.

36



BACK

BASE

BEGIN

BL
BLANKS

BLK

BLOCK

BRANCH

BUFFER

ce

addr —
Calculate the backward branch offset from HERE to addr and
compile into the next available dicitionary memory address.

-— addr
A user variable containing the currrent number base used for input
and output conversion

-— addr n (compiling)

Occurs in a colon-definition in form:

BEGIN ... UNTIL

BEGIN ... AGAIN

BEGIN ... WHILE ... REPEAT

At run-time, BEGIN marks the start of a sequence that may be
repetitively executed. It serves as a return point from the
corresponding UNTIL, AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur if the top of the stack is false;
for AGAIN and REPEAT a return to BEGIN always occurs.
At compile time BEGIN leaves its return address and n for
compiler error checking.

—-c
A constant that leaves the ascii value for "blank”.

addr count -—
Fill an area of memory beginning at addr with blanks.

— addr
A user variable containing the block number being interpreted. If
zero, input is being taken from the terminal input buffer.

a -— addr

Leave the memory address of the block buffer containing block n.
If the block is not already in memory, it is transferred from disc to
which ever buffer was least recently written. If the block occupying
that buffer has been marked as updated, it is rewritten to disc
before block n is read into the buffer. See also BUFFER, R/W
UPDATE FLUSH.

The run-time procedure to unconditionally branch. An in-line
offset is added to the inerpretive pointer IF to branch ahead or
back. BRANCH is compiled by ELSE, AGAIN, REPEAT

n —- addr

Obtain the next memory buffer, assigning it to block n. If the coments of the
buffer is marked as updated, it is written to the disc. The address left is the
first call within the buffer for data storage.

b addr —
Store 8 bits at address.On word addressing computers,
furtherspecification is necessary regarding byte addressing.

b —-

Store 8 bits-of b into the next available dictionary byte, advancing the
dictionary pointer. This is only available on byte addressing computers,
and should be used with caution on byte addressing mini-computers.

addr — b

Leave the 8 bit contents of memory address. On word addressing
computers, further specification is needed regarding byte
addressing.

37



CFA

CMOVE

COLD

COMPILE

CONSTANT

CONTEXT

COUNT

CR

CREATE

CSP

D+

D+-

pfa —cfa
Convert the parametrer field address of a definition to its code field
address

from to count -—

Move the specified quantity of bytes beginning at address from to
address to. The contents of address from is moved first proceeding
toward high memory. Further specification is necessary on word
addressing computers.

The cold start proceedure to adjust the dictionary pointer to the
minimum standard and restart via ABORT. May be called from
the terminal to remove application programs and restart.

When the word containing COMPILE executes, the execution
address of the word following COMPILE is copied (compiled) into
the dictionary. This allows specific compilation situations to be
handled in addition to simply compiling an execution address
(which the interpreter already does).

n-—
A defining word used in the form:

n CONSTANT cccc

to create word cccc, with its parameter field containing n. When
ccee is later executed, it will push the value of n to the stack.

--- addr
A user variable containing a pointer to the vocabulary within
which dictionary searches will first begin.

addrl ---addr2 n

Leave the byte address addr2 and byte count n of a message text
beginning at address addrl. It is presumed that the first byte at
addrl contains the text byte count and the actual text starts with
the second byte. Typically COUNT is followed by TYPE.

Transmit ‘a carriage return and line feed to the selected output
device.

A defining word used in the form:

CREATE cccc

by such words as CODE and CONSTANT to create a dictionary
header for a Forth definition. The code field contains the address
of the words parameter field. The new word is created in the
CURRENT vocabulary

—addr u
A user variable temporarily storing the stack pointer position, for
compilation error checking.

dl d2 -—dsum
Leave the double number sum of two double numbers.

dl n —-d2
Apply the sign of n to the double number dl, leaving it as d2.

d -

Print a signed double number from a 32 bit two’s a complement
value. The high-order 16 bits are most accessable on the stack.
Conversion is performed according to the current BASE. A blank
follows. Pronounced D-dot.

38



D.R

DABS

DECIMAL

DEFINITIONS

DIGIT

DLITERAL

DMINUS

DO

DOES>

dn -—
Print a signed double number d right aligned in a field n characters
wide.

d —ud
Leave the absolute value ud of a double number.

Set the numeric conversion BASE for decimal input-output.

Used in the form:

cece DEFINITIONS

Set the CURRENT vocabulary to the CONTEXT vocabulary. In
the example, executing vocabulary name cccc made it the
CONTEXT vocabulary and executing DEFINITIONS made both
specify vocabulary cccc. -

¢ nl — n2 tf (ok)

cnl —ff  (bad
converts the ascii character ¢ (using base nl) to its binary
equivalent n2, accompanied by a true flag. Ifthe conversion is
invalid, leaves only a false flag.

d -— d (executing)

d — (compiling)
If compiling, compile a stack double number into a literal will push
it to the stack. If executing, the number will remain on the stack.

dl —-d2
Convert dl to its double number two’s complement.

nl n2 —- (execute)

addr n —(compile)
Occurs in a colon-definition in form:

DO ... LOOP

DO ... +LOOP
At run time, DO begins a sequence with repetitive execution
controlled by a loop limit n1 and an index with initial value n2. DO
removes these the index is incremented by one. Until the new index
equals or execeeds the limit, execution loops back to just after DO;
otherwise the loop parameters are discarded and execution
continues ahead. Both nl and n2 are determined at run-time and
may by the result of the other operations. Within a loop I will copy
th current value of the index to the stack. See I, LOOP, +LOOP,
LEAVE. When compiling within the colon-definition, DO
compiles (DO), leaves the following address addr and n for later
error checking.

A word which defines the run-time action within a high-level
defining word. DOES > alters the code alters the code field and first
parameter of the new word to execute the sequence of compiled
word addresses following DOES>. Used in combination with <
BUILDS. When the DOES > part executes it begins with the addrc
of the first parameter of the new word on the stack. This allows
inerpretation using this area or its contents. Typical uses include
the Forth assembler, multidiminsional arrays, and compiler
generation.

39



DP

DPL

DROP

DUMP

DUP

ELSE

EMIT

EMPTY-BUFFERS

ENCLOSE

END

ENDIF

—- addr

A user variable, the dictionary pointer, which contains the address
of the next free memory above the dictionary. The value may be
read by HERE and altered by ALLOT.

- addr

A user variable containing the number of digits to the right of the
decimal on double integer input. It may also be used hold output
column location of a decimal point, in user generated formating.
The default value on single number input is -1.

n—
Drop the number from the stack.

addr n -
Print the contents of n memory locations beginning at addr. Both addresses
and contents are shown in the current numeric base.

n-—--nn
Duplicate the value on the stack.

addrl nl -- addr2 n2

(compiling)

Occurs within a colon-definition in the form:

IF ... ELSE ... ENDIF

At run-time, ELSE executes after the true part following IF. ELSE forces
execution to skip over the following false part and resumes execution after
the ENDIF. If has no.stack effect. ’

At compile-time ELSE emplaces BRANCH reserving a branch OFFSET,
leaves the address addr2 and n2 for error testing. ELSE also resolves the
pending forward branch form IF by calculating the offset from addrl to
HERE and storing at addrl.

C —
Transmit asciii character ¢ to the selected output device. OUT is
incremented for each character output.

Mark all block-buffers as empty, not necesssarily affecting the contents.,
Updated blocks are not written- to the disc. This is also an initialisation
proceedure before first use of the disc.

addrl ¢ —-

addrl nl n2 n3
The text scanning primitive used by WORD. From the text address addrl
and an ascii delimiter the byte offset to the first non-delimiter characternl,
the offset to the first delimiter after the text n2, and the offset to the first
character not included. This proceedure will not process past an ascii ‘null’,
treating it as an unconditional delimiter.

This is an”alia§ or duplicate definition for UNTIL.

addr n — (compile)

Occurs in a colon-definition in form:

IF ... ENDIF

IF ... ELSE ... ENDIF

At run-time, ENDIF serves only as thje destination of a forward branch
from IF or ELSE. It marks the conclusion of the condional structure.
THEN is another name for ENDIF. Both names are supported in fig-
FORTH. See also IF and ELSE. At compile-time, ENDIF computers the
forward branch offset from addr to HERE and stores it at addr. n is used for
error tests.

40



ERASE

ERROR

EXECUTE

EXPECT

FENCE

FILL

FIRST

FORGET

FORTH

HERE

HEX

HLD

HOLD

addrn —
Clear a region of memory to zero from addr over n addresses.

line — in bik

Execute error notification and restart of system. WARNING is first
examined. If 1, the text of line n, relative to screen 4 to drive 0 is printed.
This line number may be positive or negative and beyond just screen 4, If
WARNING is 0, n is just printed as a message number (non disc
installation). If WARNING is -1 the definition (ABORT) is executed which
executes the system ABORT. The user may cautiously modify this
execution by alterin (ABORT), fig-FORTH saves the contents of IN and
BLK to assist in determining the location of the error. Final action is
execution of QUIT.

addr —-
Execute the defintion whose code field address is on the stack. The code
field address is also called the compilation address.

addr count —

Transfer characters from the terminal to address, until a “return” or the
count of characters have been received. One or more nulls are added at the
end of the text.

— addr
A user variable containing an address below which FORGETTING is
trapped., To forget below this point the user must alter the contents of
FENCE.

addr quan b —
Fill memory at the address with the specified quantity of bytes b.

—n
A constant that leaves the address of the first (lowest) block buffer.

Executd in the form:

FORGET cccc

Deletes defintion named cccc from the dicionary with all entries physically
following it. In fig-FORTH, an error message will occur if the CURRENT
and CONTEXT vocabularies are not currently the same.

The name of the primary vocabulary. Execution makes FORTH the
CONTEXT vocabulary. Until additional user vocabularies are defined,
new definitions become a part of FORTH. FORTH is immediate, so it will
execute during the creation of a colon definition, to select this vocabulary at
compile time.

-— addr
Leave the address of the next available dictionary location.

Set the numeric conversion base to sixteen (hexadecimal).

—addr
A user variable that holds the address of the latest character of text during

numeric output convesion.

C—

Used between < # and #> to insert an ascii character into a pictured
numeric output string. e.g. 2E HOLD will place a decimal point.

—n

Used within a DO-LOOP to copy the loop index to the stack. Other use is
implementation dependent. See R.

41



ID.

IF

ENDIF

IMMEDIATE

IN

INDEX

INTERPRET

KEY

LATEST

LEAVE

LFA

addr —
Print a definition’s name from its name field address.

f -— (run time)
—- addr n (compile)

Occurs is a colon-defintion in form:

IF (tp) ... ENDIF

IF (tp) ... ELSE (fp) ... ENDIF
At run-tiem, IF selects execution based on a boolean flag. If f is true (non-
zero), execution continues ahead thru the true part. If f is false (zero),
execution skips till just after ELSE to execute the false part. After either
part, execution resumes after ENDIF. ELSE and its false part are optional.;
if missing, false execution skips to just after ENDIF.

At compile-time IF compiles 0BRANCH and reserves space for an offset at
addr. addr and n are used later for resolution of the offset an error testing.

Mark the most resently made definition so that when encountered at
compile time, it will be executed rather than being compiled. i.e. the
precedence bit in its header is set. This method allows definitions to handle
unusual compiling situations, rather than build them into the fundamental
compiler. The user may force compilation of an immediate definition by
preceeding it with [COMPILE].

— addr

A user variable containing the byte offset within the current input text
buffer (terminal or disc) from which the next text will be accepted. WORD
uses and moves the value of IN.

from to —
Print the first line of each screen over the range from, to. This is used to view
the comment lines of an area of text on disc screens.

The outer text interpreter which sequentialy executes or compiles text from
the input stream (terminal or disc) depending on STATE. If the word name
cannot be found after a search of CONTEXT and then CURRENT it is
converted to a number according to the current base. That also failing, an
error message echoing the name with *?” will be given. Text input will be
taken according to the convention for WORD. if a decimal point is found as
part of a number, a double number value will be left. The decimal point has
no other purpose than to force this action. See NUMBER.

-—c
Leave the ascii value of the next terminal key struck.

—- addr
Leave the name field address of the topmost word in the CURRENT
vocabulary.

Force termination of a DO-LOOP at the next opportunity by setting the
loop limit equal to the current value of the index. The index itself remains
unchanged, and execution proceeds normally until LOOP or +LOOP is
encountered.

pfa - lfa
Convert the parameter field address of a dictionary definition to its link

field address.

42



LIMIT

LIST

LIT

LITERAL

LOAD

LOOP

M/

M/MOD

MAX

MESSAGE

MIN

MINUS

-—n
A constant leaving the addréss just above the highest memory available fora
disc buffer. Usually this is the highest system memory.

n—
Display the ascii text of screen n on the selected output device. SCR
contains the screen number during and after this process.

—a
Within a colon-definition, LIT is automatically compiled before each 16 bit
literal number encountered is input text. Later execution of LIT causes the
contents of the next dictionary address to be pushed to the stack.

n — (compiling)

If compiling, then compile the stack value n as a 16 bit literal. This
definition is immediate so that it will execute during a colon definition. The
intended use is:

. xxx (calculates) LITERAL ;

Compilation is suspended for the compile time calculation of a value.
Compilation is reusumed and LITERAL compiles this value.

n—

Begin interpretation of screen n. Loading will terminate at the end of the
screen or at. ;S. See ;S and ~>

addr n — (compiling)

Occurs in a colon-definition in form:

DO ... LOOP

At run-time, LOOP selectively controls branching back to the
corresponding DO based on the loop index «nd limit. The loop index is
incremented branch back to DO occurs until the index equals or exceeds the
limit; at that time, the parameters are discarded and execution continues
ahead. At compile-time, LOOP compiles (LOOP) and uses addr to
calculate an offset to DO. n is used for error testing.

nln2 —d .
A mixed magnitude math operation which leaves the double number signed
product of two signed numbers.

dnl —n2n3

A mixed magnitude math operator which leaves the signed remainder n2and
signed quotient n3, from a double number dividend and divisor nl. The
remainder takes its sign from the dividend.

udl u2 — u3 ud4

An unsigned mixed magnitude math operator which leaves a double
quotient ud4 and remainder u3, form a double dividend udl and single
divisor u2.

nl n2 — max

Leave the greater of two numbers.

n—

Print on the selected output device the text of line n relative to screen 4 of
drive 0. n may be positive or negative. MESSAGE may be used to print
incidental text such-as report headers. If WARNING is zero, the message
will simply be printed as a number (disc un-available).

nl n2 — min
Leave the smaller of two numbers.

nl n2 —
Leave the two’s complement of a number.

43



MOD

NEXT

NFA

NUMBER

OFFSET

OR

ouT

OVER

PAD

PFA

PREV

QUERY

QUIT

R#

nl n2 — mod
Leave the remainder of nl/n2, with the same sign as nl.

This is the inner interpreter that uses the interpretive pointer IP to execute
compiled Forth definitions. It is not directly executed but is the return point
for all code ‘procedures:. It acts by fetching the address pointed to by the
address pointed to by W. W points to the code field of a definition which
contains the address of the code which executes for that definition. This
usage of indirect threaded code is a major contributor to the power,
portability, and extensibility of Forth. Location of IP and W are computer
specific.

pfa — nfa
Convert the parameter field address of a definition to its name field.
addr — d

Convert a character string left at addr with a preceeding count, to a signed
double number, using the current numeric base. If a decimal point is
encountered in the text, its position will be given in DPL, but no other effect
occurs. If numeric conversion is not possible, an error message will be
given.

— addr

A user variable which may contain a block offset to disc drives. The
contents of OFFSET is added to the stack number by BLOCK. Messages by
MESSAGE are independent of OFFSET. See BLOCK, DRO, DRI,
MESSAGE

nl n2 — or
Leave the bit-wise logical or of two 16 bit values.

-— addr
A user variable that contains a value incremented by EMIT. The user may
alter and examine OUT to control display formating.

nl n2 -~ nl n2nl
Copy the second stack value, placing it as the new top.

- addr
Leave the address of the text output buffer, which is a fixed offset above
HERE.

nfa —- pfa
Convert the name field address of a compiled definition to its parameter
field address.

— addr

A variable containing the address of the disc buffer most recently
referanced. The UPDATE command marks this buffer to be later written to
disc.

Input 80 characters of text (or until a "return”)from the operators terminal.
Text is positioned at address contained in TIB with IN set to zero.

Clear the return stack, stop compilation, and return control to the
operators terminal. No message is given.

—-n
Copy the top of the return stack to the computation stack.

—addr U
A user variable which may contain the location of an editing cursor, or
other file related function.

4



R/W .

addr blk f —

The fig-FORTH standard disc read-write linkage, addr specifies the source
or destination block buffer. blk is the sequential number of the referenced
block; and f is a flag for f-o write and f-1 read. R/W determines the location
on mass storage, performs the read-write and performs any error checking.

R>-—n

Remove the top value from the return stack and leave it on the computation
stack. See >R and R.

RO - addr
A user variable containing the initial location of the return stack.
Pronounced R-zero. See RP!
REPEAT addr n — (compiling)
Used within a colon-definition in the form:
BEGIN ... WHILE ... REPEAT
At run-time, REPEAT forces an unconditional branch back to just after the
corresponding BEGIN.
At compile-time, REPEAT compiles BRANCH and the offset from HERE
to addr. n is used for error testing.
ROT nln2n3 —n2n3nl
Rotate the top three values on the stack, bringing the third to the top.
RP!
A computer depenent proceedure to initialize the return stack pointer from
user variable RO.
S>> D n—d
Sign extend a single number to form a double number.
S0 — addr
A user variable that contains the initial value for the stack pointer.
Pronounced S-zero. See SP!
SCR — addr
A user variable containing the screen number most recently reference by
LIST.
SIGN nd-—d
Stores an ascii " sign just before a converted numeric output string in the
text output buffer when n is negative. nis discarded, but double number dis
maintained. Must by used between < # and # > .
SMUDGE
Used during word definition to toggle the "smudge bit” in a definitions
name field. This prevents an uncompleted definition from being found
during dictionary searches, until compiling is completed without error.
SP!
A computer dependent proceedure to initialize the stack pointer from SQ.
SP@ — addr
A computer dependent proceedure to return the address of the stack
position to the top of the stack, as it was before SP-@ was executed.
(eg. 12SP@ @ ... wouldtype221)
SPACE
Transmit an ascii blank to the output device.
SPACES n —

Transmit n ascii blanks to the output device.

45



STATE

SWAP

THEN

TIB

TOGGLE

TRAVERSE

TRIAD

TYPE

u/

UNTIL

UPDATE

USE

USER

— addr
A user variable containing the compilation state. A non-zero value
indicates compilation. The value itself may be implementation dependent.

nl n2 — n2 nl
Exchange the top two values on thy stack.

An alias for ENDIF.

— addr
A user variable containing the address of the terminal input buffer.

addr b —
Complement the contents of addr by the bit pattern b.

addrl n — addr2

Move across the name field of a fig-FORTH variable length name field.
addrl is the atidress of either the length byte or the last letter. If n=-], the
motion is toward low memory. The addr2 resulting is address of the other
end of the name.

SCr —
Display on the selected ouput device the three screens which include that
numbered scr, beginning with a screen evenly divisible by three. Output is
suitable for source text records, and includes a reference line at the bottom
taken from line 15 of screend.

addr count —
Transmit count charcters from addr to the selected output device.

ul u2 — ud
Leave the unsigned double number product of two unsigned numbers.

ud ul — u2 u3
Leave the unsigned remainder u2 and unsigned quotient u3 from the
unsigned double dividend ud and unsigned divisor ul.

f — (run-time)
addr n —- (compile)

Occurs within a colon-definition in the form:

BEGIN ... UNTIL

At run-time, UNTIL controls the conditional brach back to the
corresponding BEGIN. Iffis false, execution returns to just after BEGIN; if
true, exection continues ahead. At compile-time, UNTIL compiles
(OBRANCH) and an offset from HERE to addr. n is used for error tests.

Marks the most recently referenced block (pointed to by PREV) as altered.
The block will subsequently be transferred automatically to disc should its
buffer be required for storage of a different block.

--- addr
A variable containing the address of the block buffer to use next, as the least
recently written.

n -—--
A defining word used in the form:

n USER ccce

‘Which creates a user variable cccc. The parameter field of ccec contains nas
a fixed offset relative to the user pointer register UP for this user variable.
When cccc is later executed, it places the sum of its offset and the user area
base address on the stack as the storage address of that particular variable.

46



VARIABLE

VOC-LINK

VOCABULARY

VLIST

WARNING

WHILE

WIDTH

WORD

A defining word used in the form:

n VARIABLE cccc

When VARIABLE is executed, it creates the definition cccc with its
parameter field initialized to n. When cccc is later executed, the address of
its parameter field (containing n) is left on the stack, so that a fetch or store
may access this location.

~—- addr

User variable containing the address of a field in the definition of the most
recently created vocabulary. All vocabulary names are linked by these fields
to allow control for FORGETting multiple vocabularys.

A defining word used in the form:

VOCABULARY cccc

to create a vocabulary definition cccc. Subsequent use of cccc will make it
the CONTEXT vocabulary which is searched first by INTERPRET. The
sequence “cccc DEFINITIONS” will also make cccc the CURRENT
vocabulary into which new definitions are placed. In fig-FORTH, cccc will
be so chained as to include all definitions of the vocabulary in which ccccis
itself defined. All vocabularys ultimately chain to forth. By convention,
vocabualry names are to be declared IMMEDIATE. See VOC-LINK.

List the names of the definitions in the context vocabulary. "Break” will
terminate the listing.

— addr

A user variable containing a value controlling messages. If=1 disc is
present, and screen 4 of drive 0 is the base location for messages. If =0, no
disc is present and will be pr ted by number. If = -1, execute
(ABORT) for a user specified procedure:. See MESSAGE, ERROR.

f -— (run-time)

adl nl — adl nl ad2 n2
Occurs in a colon-definition in the form:
BEGIN ... WHILE (tp) ... REPEAT
At run-time, WHILE selects conditional execution base on boolean flag f.
If f is true (non-zero), WHILE continues execution of the true part thru to
REPEAT, which then branches back to BEGIN. If f is false (zero),
execution skips to just after REPEAT, exiting the structure. At compile
time. WHILE emplaces (OBRANCH)and leaves ad2 of the reserved offset.

The stack values will be resolved by REPEAT.

— addr

In fig-FORTH, a user variable containing the maximum number of letters
saved in the compilation of a definitions name. It must be 1 thru 31, witha
default value of 31. The name character count and its natural characters are
saved, up to the value in WIDTH. The value may be changed at any time
within the above limits.

C —

Road the next text characters from the input stream being interpreted, until
a delimiter c is found, storing the packed character string beginning at the
dictionary buffer HERE. WORD leaves the character count ‘in the first
byte the cnaracters and ends with two or more blanks. Leading occurances
of careignored. If BLK is zero, text is taken from the terminal unput buffer,
otherwise from the disc block stored in BLK. See BLK, IN.

47



XOR nl n2 - xor

[COMPILE]

Leave the bitwise logical exclusive or of two values.

Used in a colon-definition in form:

: xxx | words [ more :

Suspend compilation. The words after [ are executed, not compiled. This
allows calculation or compilation exceptions before resuming compilation
with ]. See LITERAL, 1.

: xxx [COMPILE] FORTH ;

[COMPILE] will force the compilation of an immediate definition that
would otherwise execute during compilation. The above example will select
the FORTH vocabulary when xxx executes, rather than at compile time.

Resumes compilation, to the completion of a colon-definition, See [ .

48



APPENDIX 5

FURTHER READING.
The titles given here have all been consulted by the author in the writing of this version of FORTH and as
such all can be recommended.

1). THREADED INERPRETIVE LANGUAGES by R.G. Loeliger.
Byte Publicaitons

This book presents a revealing insight into the world of FORTH like langauges. It is of particular
interest to those with experience of programming at the machine language level. An ideal book for the
"hacker” who likes to know what makes things tick.

2). STARTING FORTH By Leo Brodie.
Prentice Hall

This book was written by a member of FORTH inc. which is the company founded by FORTH’s
inventor Charles Moore. It is an extremely good book with a pleasant and often ammusing style of writing.

3). FORTH FOR MICROS By Steve Oakey.
Newnes Programming Books.

A very good book which gives many examples of FORTH together with there BASIC and PASCAL
equivalents. Each chapter ends with self test exercise with sample answers provided.

4). BYTE Magazine, volume 5, number 8, August 1980

An entire issue of this magazine devoted to the FORTH language. This issue is now out of print but
certainly worth reading if you can lay your hands on a copy. Regarded by some people as a FORTH bible.

49



APPENDIX 6
FIG-FORTH VOCABULARY

TASK WHERE EDIT EDITOR PLAY SWAIT ENT ENV (TENV) (AENV) RELEASE SQ
(SOUND-QUEUE) FREEZE CONTINUE RESET SFLUSH SHOLD RENDEZVOQOUS DURATION
VOLUME NOISE PERIOD TONE-ENV AMP-ENV CHANNEL SOUND INPUT$ STRING 2-
ARRAY I-ARRAY BELL COPY GETKEY PRINTER (PRINTER) SCREEN TESTR TEST
GPAPER GWINDOW GPEN DRAWR DRAW PLOTR PLOT MOVER MOVE ORIGIN CLG
EXCHANGE STREAM TAG CHARACTER SYMBOL BORDER PAPER PEN INK MODE
INVERSE TRANSPARENT WINDOW JOY1 JOY0 LOCATE ?TIME 0TIME WAIT DUMP CLS
ENDCASE ENDOF OF CASE RANDOM NCASE SEED 20VER 2SWAP 2DROP .S ROLL PICK
OCTAL BINARY 2/ 2- I- 2* <> <= >= NOT MYSELF SYSDUMP SYSWRITE GET PUT
TLOAD TSAVE FORTH VLIST TRAID INDEX U. ? . D. .R D.R #S # SIGN #> <#

SPACES WHILE ELSE IF REPEAT AGAIN END UNTIL +LOOP LOOP DO THEN ENDIF
BEGIN BACK FORGET MESSAGE LIST —> LOAD FLUSH R/W BLOCK BUFFER .LINE
(LINE) EMPTY-BUFFERS UPDATE +BUF #BUF PREV USE ' M/MOD */ */MOD MOD /
/MOD * M/ M* MAX DABS ABS D+- +- 8->D U< MIN COLD WARM ABORT (

DEFINITIONS VOCABULARY IMMEDIATE INTERPRET ?STACK DLITERAL LITERAL
[COMPILE} CREATE ID. ERROR (ABORT) -FIND NUMBER (NUMBER) WORD PAD HOLD
BLANKS ERASE FILL QUERY EXPECT .” (.") -TRAILING TYPE COUNT DOES> <BUILDS
;CODE (;CODE) DECIMAL HEX SMUDGE ] [ COMPILE ?LOADING ?CSP ?PAIRS ?EXEC
?7COMP ?ERROR /CSP PFA NFA CFA LFA LATEST TRAVERSE -DUP SPACE ROT> < =C,,
ALLOT HERE 2+ 1+ HLD R# CSP FLD DPL BASE STATE CURRENT CONTEXT OFFSET
SCR OUT IN BLK VOC-LINK DP FENCE WARNING WIDTH TIB RO SO +ORIGIN QUIT-
B/SCR B/BUF LIMIT FIRST C/L BL 3 2 1'0 USER VARIABLE CONSTANT ; : DMINUS
MINUS- D+ + 0< 0= R R> >R LEAVE ;S RP/ RP@ SP/ SP@ XOR OR AND U/ U» CMOVE
ENCLOSE (FIND) DIGIT K J I (DO) (+LOOP) (LOOP) BRANCH 0BRANCH CR ?TERMINAL
KEY (KEY) EMIT TOGGLE / C! C@ @ +/ 2DUP DUP SWAP DROP OVER LIT EXECUTE

50



NOTES

51



NOTES

52



NOTES

53



NOTES

54



Published by Interceptor Ltd.
Mercury House, Calleva Park Ind Est.
Aldermaston, Berks.
Telephone:(07356) 71145



	Pag 00 - 1
	Pag 00 - 2
	Pag 00 - 3
	Pag 01
	Pag 02
	Pag 03
	Pag 04
	Pag 05
	Pag 06
	Pag 07
	Pag 08
	Pag 09
	Pag 10
	Pag 11
	Pag 12
	Pag 13
	Pag 14
	Pag 15
	Pag 16
	Pag 17
	Pag 18
	Pag 19
	Pag 20
	Pag 21
	Pag 22
	Pag 23
	Pag 24
	Pag 25
	Pag 26
	Pag 27
	Pag 28
	Pag 29
	Pag 30
	Pag 31
	Pag 32
	Pag 33
	Pag 34
	Pag 35
	Pag 36
	Pag 37
	Pag 38
	Pag 39
	Pag 40
	Pag 41
	Pag 42
	Pag 43
	Pag 44
	Pag 45
	Pag 46
	Pag 47
	Pag 48
	Pag 49
	Pag 50
	Pag 51
	Pag 52
	Pag 53
	Pag 54
	Pag 55

